

Spring Persistence with
Hibernate

Build robust and reliable persistence solutions for your
enterprise Java application

Ahmad Reza Seddighi

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Spring Persistence with Hibernate

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2009

Production Reference: 1201109

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849510-56-1

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Credits

Author
Ahmad Reza Seddighi

Reviewer
Luca Masini

Acquisition Editor
Sarah Cullington

Development Editor
Rakesh Shejwal

Technical Editor
Pallavi Kachare

Indexer
Hemangini Bari

Editorial Team Leader
Akshara Aware

Project Team Leader
Priya Mukherji

Project Coordinator
Zainab Bagasrawala

Proofreader
Joel T. Johnson

Graphics
Nilesh Mohite

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

About the Author

Ahmad Reza Seddighi is an author, speaker, and consultant in architecting and
developing enterprise software systems. He is an IT graduate from the University of
Isfahan, Iran, and has ten years experience in software development. He currently
lives in Tehran, where he works with a number of small but growing IT companies.
He loves teaching so he grabs any teaching opportunities. He is also the author
of three other books: Core Java Programming, Java Web Development, and Open
Source J2EE Development, all in Farsi.

As the book was going to publish by Apress, and prepared and
made ready by that, I'd like to thank the Apress crew at first. In
particular, Steve Anglin, acquisitions editor; Kylie Johnston, project
manager; Matthew Moodie, reviewing editor; Sumit Pal, technical
reviewer; Nancy Holzner, copyeditor; Elizabeth Berry, production
editor; Brenda Miller, indexer; Gina Rexrode, compositor; April
Eddy, proofreader; and April Milne, artist.

I should also thank the Packt crew, Sarah Cullington, acquisition
editor; Priya Mukherji, project team leader; Rakesh Shejwal,
development editor; Luca Massini, technical reviewer; Pallavi
Kachare, technical editor; Zainab Bagasrawala, project coordinator;
Akshara Aware, editorial team leader; Joel T. Johnson, proofreader;
Nilesh Mohite, graphic organizer; Shantanu Zagade, production
coordinator; Hemangini Bari, indexer; and Shantanu Zagade,
cover work.

Special thanks to Sepehr Fatemi for his support in writing and
reviewing the book, and sincere regards to my family, and specially
my brother, Rohollah, who has always offered excellent support and
encouragement.

In the end, I express my gratitude to all my friends, whom I've not
named here and who have always supported me. Thank you all.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

About the Reviewer

Luca Masini is a Senior Software Engineer and Architect, born as a game developer
for Commodore 64 (Footbal Manager) and Commodore Amiga (Ken il guerriero),
soon he converted to Object-Oriented programming and for that, from his beginning
in 1995, he was attracted by the Java language.

He worked on this passion as a consultant for the major Italian banks, developing
and integrating the main software projects for which he has often taken the technical
leadership. He was able to lead adoption of Java Enterprise in an environment
where COBOL was the flagship platform, converting them from mainframe
centric to distributed.

He then shifted his eyes toward open-source, starting from Linux and then with
enterprise frameworks, with which he was able to introduce, with low impact, some
concept like IoC, ORM, MVC. For that he was an early adopter of Spring, Hibernate,
Struts, and an entire host of other technologies that in the long run have given his
customers a technological advantage, and therefore development costs cuts.

Lately, however, his attention is completely directed towards the simplification and
standardization of development with Java EE, and for this he is working at the ICT of
a large Italian company to introduce advanced build tools (Maven and Continuous
Integration), archetypes of project and "Agile Development" with plain standards.

Dedicated to my friend Enzo, and our common passion.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

To my parents

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Table of Contents
Preface 1
Chapter 1: An Introduction to Hibernate and Spring 7

Persistence management in Java 8
The mismatch problem 9

Identity and equality mismatch 9
Mapping object inheritance mismatch 15
Mapping more complicated objects 17

Object relational mapping 20
Hibernate as an O/R Mapping solution 20

Other O/R Mapping solutions 22
Hibernate versus other frameworks 23

Hibernate architecture 23
What is Spring 25

Inversion of Control container 25
Aspect-oriented programming framework 26
Data access abstraction 26
Transaction abstraction 27
MVC web framework 27
Testing support 27

Summary 28
Chapter 2: Preparing an Application to Use Spring
with Hibernate 29

Setting up the database 30
Getting and installing HSQLDB 30
Configuring and running HSQLDB 30
HSQLDB server modes 31
Managing HSQLDB 32

Getting a Hibernate distribution 34
Getting a Spring distribution 34

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Table of Contents

[ii]

Setting up the project hierarchy 34
Put the required libraries in the lib directory 35

Setting up Ant or Maven in the project 36
Summary 37

Chapter 3: A Quick Tour of Hibernate and Spring 39
Getting started with Hibernate 40

Designing and implementing persistent classes 41
Creating Database Tables 42
Creating mapping metadata 44
A simple client 47

Configuring Hibernate 48
Obtaining a session object 49
Starting a transaction 49
Performing the operation 50
Committing/rolling back the transaction 50

Hibernate declarative configuration 51
Some issues in mapping 53

Caching 53
Querying objects 54

Getting started with Spring 55
A simple case 55
Applying IoC 60

Remove object instantiation and implement the setter method 60
Configure the Student object 61
Obtain the Student instance from Spring 63

Hibernate with Spring 64
Summary 64

Chapter 4: Hibernate Configuration 65
Basic configuration information 65
Hibernate dialect 67
Configuring Hibernate 69

Programmatic configuration 69
Declarative configuration 71

Using a properties file 71
Using an XML file 72

Using a single instance of SessionFactory 74
JPA configuration 76
Summary 78

Chapter 5: Hibernate Mappings 81
Persistent entity classes 82

Having a zero-argument constructor (mandatory) 85
Providing accessors to access class properties (optional) 86

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Table of Contents

[iii]

Defining nonfinal classes (optional) 87
Implementing equals() and hashCode() (optional) 87

Object/relational mapping metadata 87
Metadata in XML 88

Doctype 89
The <hibernate-mapping> root element 89
The <class> element 90
The <id> element 92
The <property> element 95

Metadata in annotations 96
@Entity 99
@Table 99
@Id and @GeneratedValue 100
@Basic 101
@Lob 101
@Transient 101
@Column 102

Mapping inheritance hierarchy 102
One table for each concrete class 103
One table for class hierarchy 104
One table per subclass 107
Implicit polymorphism versus explicit polymorphism 109

Summary 110
Chapter 6: More on Mappings 111

Mapping components 111
Mapping collections 114

The <set> element 116
The <bag> element 118
The <idbag> element 119
The <list> element 120
The <map> element 122
Mapping collections with annotations 123
Sorted sets and sorted maps 124
Using the order-by attribute to order collection elements 127

Mapping object associations 128
The <one-to-one> element 128

Using identical primary keys 129
Foreign key one-to-one 132

The <many-to-one> element 134
The <one-to-many> element 137

Mapping a one-to-many relationship with other collections 140
The <many-to-many> element 144

Summary 148

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Table of Contents

[iv]

Chapter 7: Hibernate Types 149
Built-in types 150
Custom types 152

UserType 153
CompositeUserType 161

Summary 166
Chapter 8: Hibernate Persistence Behavior 167

The life cycle of persistent objects 167
Transient objects 168
Persistent objects 168
Detached objects 168
Removed objects 169

Persistence with Hibernate 169
The process of persistence 170
Storing objects 172
Object equality and identity 174
Loading objects 175
Refreshing objects 177
Updating objects 179

Checking for dirty Sessions 181
Using the merge() method 182

Deleting objects 182
Replicating objects 184

Cascading operations 187
An example cascading operation 188

Using cascade="save-update" 192
Using cascade="none" 193
Using cascade="delete" 193
Using cascade="delete-orphan" 193

Lazy loading 194
Some useful Session methods 196
Summary 197

Chapter 9: Querying In Hibernate 199
The Session API and querying 200
HQL 201

The from clause 202
The as clause 203
Query an object's associations 203
The select clause 205
HQL's aggregate functions 206
The where clause 207

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Table of Contents

[v]

Positional versus named parameters 208
The order by and group by clauses 210

Bulk updates and bulk deletes with HQL 211
Queries in native SQL 212
Named SQL and HQL queries 214
Using the Criteria API 217

Using a simple Criteria 217
Looking at the Restrictions class's factory methods 218

Equality restrictions 219
Null and empty restrictions 220
Likeness restrictions 220
Comparison restrictions 222
Logical restrictions 223
Size restrictions 224
Disjunctions and conjunctions 224
SQL restrictions 225

Query By Example (QBE) 225
Paging the query result 227
Logging the Hibernate-Generated SQL 229
Summary 229

Chapter 10: Inversion of Control with Spring 231
Inversion of Control and dependency injection 232

Dependency push versus dependency pull 232
Dependency injection 234

Inversion of Control in Spring 234
Application definition 234
Implementing non-IoC-style code 234
Applying IoC 236

Setter injection 239
Constructor injection 241
Method injection 245

Bean configuration 247
Singleton versus prototype beans 250
Wiring beans 251

Automatic wiring 255
Annotation-based container configuration 257

@Required 258
@Autowired 258
@Resource 259
Classpath scanning for annotated classes 259

Other format forms for bean definition 260
BeanFactory and ApplicationContext 261

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Table of Contents

[vi]

Applying IoC to Hibernate resources 263
PropertyEditors 267
Summary 270

Chapter 11: Spring AOP 271
Introduction to AOP 272

Implementing cross-cutting concerns with OOP 273
AOP terminology 275
Implementing cross-cutting concerns with AOP 278

Using Spring AOP with Spring IoC: An example 280
Implementing the notification concern with OOP 281
Implementing notification concern with AOP 284

Spring's AOP framework 287
Advice 287

Around advice 289
Before advice 290
After returning advice 291
Throws advice 292

Pointcuts 294
Setter and getter pointcut 295
Name matched pointcut 296
Regular expression pointcuts 297
Static matcher pointcut 298
Dynamic Matcher Pointcut 298
Pointcut composition 300

Advisor 300
Proxy configuration and creation 301

Using ProxyFactory 302
Using ProxyFactoryBean 302

Assembling the AOP components 303
Moving to Spring 2.x's AOP 305

AOP configuration with the AOP schema 306
Defining aspects 308
Defining pointcuts 308
Defining an advice 309

Before advice 310
After returning advice 310
After throwing advice 311
After advice 312
Around advice 312
Advice parameters 313

Summary 314

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Table of Contents

[vii]

Chapter 12: Transaction Management 317
Transaction essentials 318

Managing transactions in Java 319
Local versus global transactions 320
Transaction demarcation 321

Programmatic transaction demarcation 321
Declarative transaction demarcation 321

Transaction attributes 322
Transactions in Hibernate applications 323

Using JTA in Hibernate applications 325
Spring transaction abstraction 326

How Spring manages transactions 326
The choice of transaction manager 327

Using the Hibernate transaction manager 329
Using the JTA transaction manager 330

Spring transaction configuration 331
Transaction configuration in Spring 1.x 331
Transaction configuration in Spring 2.x 335

Caching 337
Summary 340

Chapter 13: Integrating Hibernate with Spring 343
The Data Access Object pattern 344
Service Facade Pattern 344
Data tier implementation with Hibernate 345
Data tier implementation with Spring 349
Spring exception translation 349
Refactoring DAO classes to use Spring 350
Configuring Hibernate in a Spring context 356
Spring transaction management 360

Local transactions 361
Global transactions 363

Summary 367
Chapter 14: Web Development with Hibernate and Spring 369

Problem definition 370
Common configuration for Spring integration 370

The MVC architectural pattern 372
Spring MVC web framework 374

Spring MVC workflow 374
Front controller 375
Handler mappings 375

BeanNameUrlHandlerMapping 376
ControllerClassNameHandlerMapping 376

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Table of Contents

[viii]

SimpleUrlHandlerMapping 376
Controllers 377
AbstractController 378

AbstractCommandController 379
SimpleFormController 380
CancellableFormController 381

Model and View 381
View resolvers 382

InternalResourceViewResolver 382
BeanNameViewResolver 382

Render the result through JSP 383
Summary 384

Chapter 15: Testing 385
An introduction to unit testing 386
Unit testing with JUnit 387

The structure of test classes with JUnit 387
Setting up the preconditions 388
Call the method being tested and verify the result 388
Perform finalization operations 390

Running JUnit tests 390
Integration testing data-access layer 391

Verify that the entity class is persistent 393
Verify that all entity fields are persistent 394
Verify that HQL works properly 395
Verify cascading operation 395

Testing Inversion of Control 396
Unit testing using mocks 398
Automating tests with Ant 403
Summary 405

Appendix: Some of Hibernate's Advanced Features 407
Hibernate's Event/Listener model 407
Interceptor 411
Filters 414

Defining a filter 415
Applying the filter 416
Enabling the filter and setting up parameters 416

More on Hibernate configuration 417
JDBC properties 417
Hibernate properties 419
Cache properties 421
Transaction properties 422

Logging configuration in Hibernate 422
Index 425

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Preface
Hibernate is a popular open-source Java framework. It aims to solve problems
associated with persistence in the Java world. Whether you are developing a simple
stand-alone application, or a full-blown, server-side Java EE application, you can
use and benefit from Hibernate. Although Hibernate has competitors, no other
persistence framework is as flexible and as easy to learn.

Spring is another popular framework. It aims to simplify Java development in
many areas, including persistence. However, Spring does not provide a persistence
framework similar to Hibernate. Instead, it provides an abstraction layer over
Hibernate to offer more flexibility, produce more effective code, and reduce
maintenance costs.

What this book covers
Chapter 1, An Introduction to Hibernate and Spring introduces Spring and Hibernate,
explaining what persistence is, why it is important, and how it is implemented
in Java applications. It provides a theoretical discussion of Hibernate and how
Hibernate solves problems related to persistence. Finally, we take a look at Spring
and the role of Spring in persistence.

Chapter 2, Preparing an Application to Use Spring with Hibernate guides you,
step-by-step, down the path of preparing your application to use Hibernate and
Spring. The prerequisites to developing with Hibernate and Spring, including getting
Hibernate and Spring distributions, setting up a database, and adding extra tools
and frameworks to your application, are all discussed here.

Chapter 3, A Quick Tour of Hibernate with Spring provides a quick tour of developing
with Hibernate and Spring. Here, a simple example illustrates the basic concepts
behind Hibernate and Spring.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Preface

[2]

Chapter 4, Hibernate Configuration shows you how to configure and set up Hibernate.
It discusses the basic configuration settings that are always required in any
application. (Some optional settings are covered in the book's appendix.)

Chapter 5, Hibernate Mappings explains basic issues related to persistent objects
and their mappings. It starts with basic mapping concepts and then moves on to
advanced and practical issues.

Chapter 6, More on Mappings continues the mapping discussion with some advanced
mapping topics. It explains how to map complex objects and create complicated
mapping files.

Chapter 7, Hibernate Types discusses how Hibernate types help to define which Java
types are mapped to which SQL database types. It explores the built-in Hibernate
types. It also looks at custom type implementation when these built-in types do
not satisfy the application's requirements, or when you want to change the default
behavior of a built-in type.

Chapter 8, Hibernate Persistence Behavior discusses the life cycle of persistent
objects within the application's lifetime. This chapter explains the basic persistence
operations provided by the Session API at the heart of the Hibernate API. The
chapter also discusses how persistence operations are cascaded between persistent
objects, and how cascading behavior is defined in mapping files

Chapter 9, Querying in Hibernate explains the different approaches that Hibernate
provides for querying persistent objects. It investigates HQL, a Hibernate-specific
query language; native SQL, a database-relevant query language; and the Criteria
API, a Hibernate API to express query statements.

Chapter 10, Inversion of Control with Spring starts developing with Spring, introducing
the Inversion of Control (IoC) pattern that is implemented at the heart of Spring.

Chapter 11, Spring AOP investigates Aspect-Oriented Programming (AOP) as
another Spring feature. Here, you'll learn what AOP means, how AOP simplifies
application architecture, and how to implement AOP in Spring.

Chapter 12, Transaction Management discusses transaction management. It explains
transaction concepts and how transactions are managed in native and Spring-based
Hibernate applications. It also discusses caching as a persistence aspect that involves
reliability of data manipulation.

Chapter 13, Integrating Hibernate with Spring explains how Hibernate and Spring
are integrated and introduces the Data Access Object (DAO) pattern. It shows how
Spring and Hibernate combine to implement this pattern.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Preface

[3]

Chapter 14, Web Development with Hibernate and Spring provides a quick discussion
of web development with Spring and Hibernate. It does not provide a detailed
discussion of web development. Instead, it takes Spring and Struts as sample
web frameworks to illustrate how you might use Spring and Hibernate to develop
web applications.

Chapter 15, Testing looks into testing persistence code, with a focus on unit testing.
It introduces JUnit as an open-source unit-testing framework and discusses which
aspects of persistence code with Hibernate require testing.

Appendix, Hibernate's Advanced Features looks at some advanced Hibernate topics,
including some useful Hibernate properties, the event/listener model implemented
by Hibernate, and Hibernate filters.

What you need for this book
In this book, I assume that you have a good understanding of the Java programming
language, preferably version 1.5 or later, including the Java syntax and basic APIs.
You are also expected to have a basic understanding of the JDBC API, relational
databases, and the SQL query language. For Chapters 14, you should have a basic
understanding of web development with Java, including HTML, JSP, servlets, and a
web container such as Tomcat.

Who this book is for
The book is primarily for Spring developers and users who want to persist using the
popular Hibernate persistence framework. Java, Hibernate, JPA, Spring, and open
source developers in general will also find the book useful.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "For instance, the == operator can be used
as follows to check whether object1 and object2 are identical."

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Preface

[4]

A block of code is set as follows:

package com.packtpub.springhibernate.ch01;

import java.util.Date;

public class Student {
 private int id;
 private String firstName;
 private String lastName;
 private String ssn;
 private Date birthdate;
 private String stdNo;
 private Date entranceDate ;

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

package com.packtpub.springhibernate.ch01;

public class Course {
 private int id;
 private String courseName;
 private int units;

 //setter and getter methods
}

Any command-line input or output is written as follows:

[Method=setId|Old Value=0|New Value=41]

[Method=setFirstName|Old Value=null|New Value=John]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "A
relational database is an application that provides the persistence service".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an email to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/0561_Code.zip to
directly download the example code.
The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration, and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering the
details of your errata. Once your errata are verified, your submission will be accepted
and the errata added to any list of existing errata. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or web site name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate
and Spring

Hibernate and Spring are open-source Java frameworks that simplify developing
Java/JEE applications from simple, stand-alone applications running on a single
JVM, to complex enterprise applications running on full-blown application servers.
Hibernate and Spring allow developers to produce scalable, reliable, and effective
code. Both frameworks support declarative configuration and work with a POJO
(Plain Old Java Object) programming model (discussed later in this chapter),
minimizing the dependence of application code on the frameworks, and making
development more productive and portable.

Although the aim of these frameworks partially overlap, for the most part, each is
used for a different purpose. The Hibernate framework aims to solve the problems
of managing data in Java: those problems which are not fully solved by the Java
persistence API, JDBC (Java Database Connectivity), persistence providers, DBMS
(Database Management Systems), and their mediator language, SQL (Structured
Query Language).

In contrast, Spring is a multitier framework that is not dedicated to a particular area
of application architecture. However, Spring does not provide its own solution for
issues such as persistence, for which there are already good solutions. Rather, Spring
unifies preexisting solutions under its consistent API and makes them easier to
use. As mentioned, one of these areas is persistence. Spring can be integrated with
a persistence solution, such as Hibernate, to provide an abstraction layer over the
persistence technology, and produce more portable, manageable, and effective code.

Furthermore, Spring provides other services spread over the application architecture,
such as inversion of control and aspect-oriented programming (explained later
in this chapter), decoupling the application's components, and modularizing
common behaviors.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate and Spring

[8]

This chapter looks at the motivation and goals for Hibernate and Spring. The chapter
begins with an explanation of why Hibernate is needed, where it can be used, and
what it can do. We'll take a quick look at Hibernates alternatives, exploring their
advantages and disadvantages. I'll outline the valuable features that Hibernate
offers and explain how it can solve the problems of the traditional approach to Java
persistence. The discussion continues with Spring. I'll explain what Spring is, what
services it offers, and how it can help to develop a high-quality data-access layer
with Hibernate.

If you already have enough background to start learning Hibernate and Spring, you
can skip this chapter and jump to the next one.

Persistence management in Java
Persistence has long been a challenge in the enterprise community. Many persistence
solutions from primitive, file-based approaches, to modern, object-oriented databases
have been presented. For any of these approaches, the goal is to provide reliable,
efficient, flexible, and scalable persistence.

Among these competing solutions, relational databases (because of certain advantages)
have been most widely accepted in the IT world. Today, almost all enterprise
applications use relational databases. A relational database is an application that
provides the persistence service. It provides many persistence features, such as
indexing data to provide speedy searches; solves the relevant problems, such as
protecting data from unauthorized access; and handles many complications, such as
preserving relationships among data. Creating, modifying, and accessing relational
databases is fairly simple. All such databases present data in two-dimensional tables
and support SQL, which is relatively easy to learn and understand. Moreover, they
provide other services, such as transactions and replication. These advantages are
enough to ensure the popularity of relational databases.

To provide support for relational databases in Java, the JDBC API was developed.
JDBC allows Java applications to connect to relational databases, express their
persistence purpose as SQL expressions, and transmit data to and from databases.
The following screenshot shows how this works:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 1

[9]

Application

Driver

Database

JDBC
SQL Statements

Result

Using this API, SQL statements can be passed to the database, and the results can be
returned to the application, all through a driver.

The mismatch problem
JDBC handles many persistence issues and problems in communicating with
relational databases. It also provides the needed functionality for this purpose.
However, there remains an unsolved problem in Java applications: Java applications
are essentially object-oriented programs, whereas relational databases store data in
a relational form. While applications use object-oriented forms of data, databases
represent data in two-dimensional table forms. This situation leads to the so-called
object-relational paradigm mismatch, which (as we will see later) causes many
problems in communication between object-oriented and relational environments.

For many reasons, including ease of understanding, simplicity of use, efficiency,
robustness, and even popularity, we may not discard relational databases. However,
the mismatch cannot be eliminated in an effortless and straightforward manner.

Identity and equality mismatch
The first and most significant mismatch involves the concepts of data equality.
Java provides two definitions for object identity and equality. According to Java,
two objects are called identical when they point to the same reference in memory.
In contrast, two objects are considered equal when they contain similar data, as
determined by the developer, regardless of the memory locations to which the
objects point.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate and Spring

[10]

Java offers the equals() method and == operator to support equality and identity,
respectively. For instance, the == operator can be used as follows to check whether
object1 and object2 are identical:

object1==object2

The equals() method, used as follows, determines whether two objects are equal:

object1.equals(object2)

When two objects are identical, they refer to the same memory location. Therefore,
they have the same value and are definitely equal. However, two objects that are
equal may not be identical since they may point to different locations in memory.

The hashCode() method must be overridden in every class which
overrides the equals() method. The hashCode() method returns an
integer as the hash code value for the object on which this method is
invoked. This code is supported for the benefit of hashing based collection
classes such as Hashtable, HashMap, HashSet, and so on. Equal objects
must produce the same hash code, as long as they are equal. However,
unequal objects do not need to produce distinct hash codes. See the JDK
documentation for more details.

While Java offers two distinct definitions for object identity and equality, databases
do not have any corresponding definitions for these terms. In a database, the data
is represented as table rows, and each table row is identified based on the content it
holds. A significant mismatch occurs when we map from the object-oriented world
to the relational world. Although two objects are not identical because they refer
to different locations in memory, in the database, they may be considered identical
because they hold the same content.

The common approach to eliminating this mismatch is to use an extra field in the
object's class, and an extra identifier column in the respective table of the object.
This approach identifies objects based on the identifier values they hold in either
object or relational form, instead of identifying them based on their references in
memory (in the object-oriented world) and based on the content they hold (and in
the relational world). Therefore, as the following screenshot shows, each object and
its corresponding row in the table can be identified through the same strategy, that
is, by considering the identifier value:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 1

[11]

STUDENT TABLE

ID FIRST_NAME LAST_NAME SSN BIRTHDAY

34
63
82

John
Andri
Martin

Taylor

Johnson
Walsh

121
212
422

12 Aug 1975

9 Jan 1964
23 Nov 1980

Student class
-id
-firstName
-lastName
-ssn
-birthday

Student instance

-id : 34
-firstName : John
-lastName : Taylor
-ssn : 121-323352-32
-birthday : 12 Aug 1875

Let's look at a simple example. Suppose that our application has a Student class. We
may typically use a STUDENT table in the database to store Student objects. We may
also use an extra field in the class, called an object identifier, and a corresponding
column in the table, called primary key, to allow objects to be recognized when they
are stored, retrieved, or updated. The following screenshot shows the STUDENT table:

STUDENT

ID
FIRST_NAME
LAST_NAME
SSN
BIRTHDATE
STD_NO
ENTRANCE_DATE

BIGINT, PK
VARCHAR(50)
VARCHAR(50)
VARCHAR(50)
DATE
VARCHAR(50)
DATE

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate and Spring

[12]

This table would hold the objects of the class shown in the following code listing.
Note that, we have just shown the skeleton of the class with its properties and
without its other details:

package com.packtpub.springhibernate.ch01;

import java.util.Date;

public class Student {
 private int id;
 private String firstName;
 private String lastName;
 private String ssn;
 private Date birthdate;
 private String stdNo;
 private Date entranceDate ;

}

We may also use the following JDBC code in our application to store a Student
object in the STUDENT table:

Connection c = null;
PreparedStatement p = null;

try {
 Student std = …//a ready to store Student object
 c = …//obtaining a Connection object
 String q = "INSERT INTO STUDENT " +
 "(ID, FIRST_NAME, LAST_NAME, SSN, BIRTHDATE, STD_NO,
 ENTRANCE_DATE)" +
 " VALUES (?, ?, ?, ?, ?, ?, ?)";
 p = c.prepareStatement(q);
 p.setInt(1, std.getId());
 p.setString(2, std.getFirstName());
 p.setString(3, std.getLastName());
 p.setString(4, std.getSsn());
 p.setDate(5, new java.sql.Date(std.getBirthdate().getTime()));
 p.setString(6, std.getSsn());
 p.setDate(7, new java.sql.Date(std.getEntranceDate().getTime()));

 p.executeUpdate();
} catch(Exception ex) {
 //handling the exception
} finally {
 if (p != null) {
 try {
 p.close();
 } catch (SQLException e) {

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 1

[13]

 //handling the exception
 }
 }
 if (c != null) {
 try {
 c.close();
 } catch (SQLException e) {
 //handling the exception
 }
 }
}

As you can see, to store a Student object, we need to obtain a PreparedStatement
object with an appropriate SQL query. We then need to put the properties of the
Student object in the PreparedStatement, and finally execute the update query
by calling the executeUpdate() method of PreparedStatement. With all of these,
we should handle exceptions when there is any problem in communicating to the
database or executing the query.

Similarly, we may use code such as the following to load a Student object:

Connection c = null;
PreparedStatement p = null;
Student std = null;

try {
 int id = ...//the identifier of the student to load
 c = …//obtaining a Connection object
 String q = "SELECT FIRST_NAME, LAST_NAME, SSN, BIRTHDATE, STD_NO,
 ENTRANCE_DATE " + "FROM STUDENT WHERE ID = ?";
 p = c.prepareStatement(q);
 p.setInt(1, id);
 ResultSet rs = p.executeQuery();
 if (rs.next()) {
 String firstName = rs.getString("FIRST_NAME");
 String lastName = rs.getString("LAST_NAME");
 String ssn = rs.getString("SSN");
 Date birthdate = rs.getDate("BIRTHDATE");
 String stdNo = rs.getString("STD_NO");
 Date entranceDate = rs.getDate("ENTRANCE_DATE");
 std = new Student(id, firstName, lastName, ssn, birthdate, stdNo,
 entranceDate);
 if (rs.next()) {
 //write a message warning about multiple objects
 }
 }

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate and Spring

[14]

} catch(Exception ex) {
 //handling the exception
} finally {
 if (p != null) {
 try {
 p.close();
 } catch (SQLException e) {
 //handling the exception
 }
 }
 if (c != null) {
 try {
 c.close();
 } catch (SQLException e) {
 //handling the exception
 }
 }
}
return std;

To load an object from the database, we need to obtain a PreparedStatment with
an appropriate SQL query, set the required values, execute the query, iterate over
the result, and produce the Student object. We should also handle the exceptions
correspondingly.

The most difficult and important parts of the above codes are the SQL
statements. These statements are expressed in a different language than
the language that object-oriented languages such as Java use. Besides,
their syntax can't be checked in the compiled time since they are
expressed in the raw String.

As it can be concluded from both the previous examples, converting the
object-oriented and relational forms of data to one another cannot be accomplished
in an effortless and straightforward manner. After all, any change in the object model
or the database schema can affect the converting code.

This example demonstrates a primary difficulty in mapping objective and relational
forms of data. However, this simple case requires only minimal effort to map a
typical entity object. The mapping of objects could easily be more complicated than
in the example, especially when an entity object is inherited from or associated with
another object. Here, we are not going to discuss issues behind persisting inheritance
and such in detail. However, a quick look at how pure JDBC deals with them offers
insight into how Hibernate can ease object mapping, as we'll see in this book.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 1

[15]

Mapping object inheritance mismatch
Another point where a mismatch occurs is in the mapping of object inheritance.
While Java lets an object be inherited by another object, relational databases do not
support the notion of inheritance. This means we need to define our own strategy to
translate class hierarchy to database schema.

Let's elaborate inheritance by extending our simple example using a general class,
Person, as a superclass of Student. The class diagram shown in the following
screenshot shows the Student class, which is now a subclass of Person:

Person

-id
-firstName
-lastName
-ssn
-birthdate

Student

-stdNo
-entranceDate

The question here is, how can the object inheritance be persisted? Can it be persisted
in one table? If not, how should we establish the relationship between tables?

One solution would be to use individual tables for individual classes in the
hierarchy. According to this solution, the objects of type superclass are stored
directly in the superclass's table, but the subclass objects are persisted in both
superclass and subclass tables. If we chose this strategy for our example, we
would have two tables, PERSON and STUDENT, as shown in the following figure:

STUDENT

ID
FIRST_NAME
LAST_NAME
SSN
BIRTHDATE

BIGINT, PK
VARCHAR(50)
VARCHAR(50)
VARCHAR(50)
DATE

ID
PERSON_ID
STD_NO
ENTRANCE_DATE

BIGINT, PK
BIGINT, FK
VARCHAR(50)
DATE

PERSON

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate and Spring

[16]

Because objects of the subclass are spread over two tables, we need a mechanism
to recognize the association between rows when an object is retrieved, updated,
or removed. Fortunately, many databases support foreign keys which are used to
establish a relationship between database tables. This is what I have used in our
example. As you can see, the STUDENT table takes the ID column as its primary
key and a foreign key onto the PERSON table, meaning it holds the identifier of the
associated row in the STUDENT table. When a Student object is stored, updated, or
removed, the relevant student's data should be inserted in, updated in, or removed
from the two tables. Moreover, to load a Student object, we need to query both
tables with SQL joins, like this:

Connection c = null;
PreparedStatement p = null;
Student std = null;
try {
 int id =...//the identifier of the student that is loaded
 c = …//obtaining a Connection object
 c.setAutoCommit(false);
 String q = "SELECT P.FIRST_NAME, P.LAST_NAME, P.SSN, " +
 "P.BIRTHDATE, S.STD_NO,
 S.ENTRANCE_DATE "+
 "FROM PERSON P INNER JOIN STUDENT S " +
 " ON P.ID = S.PERSON_ID WHERE P.ID=?; ";
 p = c.prepareStatement(q);
 p.setInt(1, id);
 ResultSet rs = p.executeQuery();
 if (rs.next()) {
 String firstName = rs.getString("FIRST_NAME");
 String lastName = rs.getString("LAST_NAME");
 String ssn = rs.getString("SSN");
 Date birthday = rs.getDate("BIRTHDATE");
 String stdNo = rs.getString("STD_NO");
 Date entranceDate = rs.getDate("ENTRANCE_DATE");
 std = new Student(id, firstName, lastName, ssn,
 birthday, stdNo, entranceDate);
 if (rs.next()) {
 //making a message warning about multiple objects existence
 }
 }
 p.close();
 c.commit();
} catch (Exception ex) {
 //handling the exception
} finally {
 if (p != null) {

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 1

[17]

 try {
 p.close();
 } catch (SQLException e) {
 //handling the exception
 }
 }
 if (c != null) {
 try {
 c.close();
 } catch (SQLException e) {
 //handling the exception
 }
 }
}
return std;

As you can see, using SQL joins makes the query expressions more complex, and
consequently harder to develop, test, and maintain.

Mapping more complicated objects
Many Java objects are associated with other objects. The associated objects may be
values or entities. Entities are objects that have their own persistent identity and are
stored as discussed before. In contrast, values are objects that do not define some
kind of persistent identity. If an entity object is associated with a value object, no real
problem arises since the value object can be stored with the entity object in the same
table. However, this is not true in the case of associations between two entity objects.
Unfortunately, databases do not offer a way to persist object associations by default.

The next mismatch happens when a graph of entity objects must be persisted in
the database. In this case, the persistence should be accomplished in such a way
that allows the object graph to be restored to its original form at a later time. As a
common strategy, for each entity class a database table is used and when an object
is stored, each object is persisted in its own database table. The next question here is,
how can object associations be persisted? As with inheritance, foreign keys can
be taken to establish inter-table relationships and provide table associations.

Let's dig a bit deeper into object associations and extend our example to see how
JDBC and SQL deal with associations in practice.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate and Spring

[18]

Mapping a many-to-many association
Let's assume that each student is associated with an array of courses. If each course
is represented by another class, Course, then we have an object relationship like the
one shown in the following screenshot:

Person

-id
-firstName
-lastName
-ssn
-birthdate

Student

-stdNo
-entranceDate
-courses

n m

Course

-id
-courseName
-units

The following code shows the Course class:

package com.packtpub.springhibernate.ch01;

public class Course {
 private int id;
 private String courseName;
 private int units;

 //setter and getter methods
}

And this shows the Student class:

package com.packtpub.springhibernate.ch01;

import java.util.Date;
import java.util.List;

public class Student extends Person {
 private String stdNo;
 private Date entranceDate;
 private List courses;

 //setter and getter methods
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 1

[19]

When we work with Hibernate, we always use simple classes which do
not have any special behaviors. It is recommended that these classes be
expressed with private properties and with setter and getter methods to
access the properties. This way of class definition has many advantages
that will be fully discussed in the coming chapters.

Note that, we have designed our classes as simple to be as possible to keep our
example simple, as well. In this case, the COURSE table needs a foreign key column
referring to the associated row in the STUDENT table. The tables may be related as
shown in the following screenshot:

ID
FIRST_NAME
LAST_NAME
SSN
BIRTHDATE

BIGINT, PK
VARCHAR(50)
VARCHAR(50)
VARCHAR(50)
DATE

PERSON STUDENT

ID
PERSON_ID
STD_NO
ENTRANCE_DATE

BIGINT, PK
BIGINT, FK
VARCHAR(50)
DATE

ID
STUDENT_ID
COURSE_NAME
UNITS

BIGINT, PK
BIGNIT, FK
VARCHAR(50)
INT

COURSE

This kind of relationship indicates that when a Student object is persisted, the
associated Course objects should be persisted as well. However, we may use a
different strategy for updating or removing associated objects when the object is
updated or removed. For example, we may decide that the associated objects are
not to be updated when the object is updated, but they should be erased from the
database when the object is removed. This is what we call a cascade operation,
indicating whether the operation, or operations, should be propagated to
associated entities.

To load an entity object, we must query the appropriate table and any others
associated with it. The following snippet shows the query to load a Student object
with its associated courses:

SELECT PERSON.FIRST_NAME, PERSON.LAST_NAME, PERSON.SSN, PERSON.
BIRTHDATE, STUDENT.STD_NO, STUDENT.ENTRANCE_DATE, COURSE.ID, COURSE.
COURSE_NAME, COURSE.UNITS FROM PERSON INNER JOIN (STUDENT INNER JOIN
COURSE ON STUDENT.ID = COURSE.STUDENT_ID) ON PERSON.ID = STUDENT.
PERSON_ID WHERE STUDENT.ID=?;

It is very difficult, tedious, and error prone to use only pure JDBC and SQL to store
the object graph in multiple tables, restore the object-oriented form of data, search
object associations, and handle object inheritance. The SQL statements you use may
not be optimized, and may be very difficult to test and maintain.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate and Spring

[20]

This is the main reason to use a persistence framework such as Hibernate. The next
section looks at Hibernate's background, as well as its advantages, alternatives,
and architecture.

Object relational mapping
As the previous discussion shows, we are looking for a solution that enables
applications to work with the object representation of the data in database tables,
rather than dealing directly with that data. This approach isolates the business logic
from any relational issues that might arise in the persistence layer. The strategy to
carry out this isolation is generally called object/relational mapping (O/R Mapping,
or simply ORM).

A broad range of ORM solutions have been developed. At the basic level, each ORM
framework maps entity objects to JDBC statement parameters when the objects
are persisted, and maps the JDBC query results back to the object representation
when they are retrieved. Developers typically implement this framework approach
when they use pure JDBC. Furthermore, ORM frameworks often provide more
sophisticated object mappings, such as the mapping of inheritance hierarchy and
object association, lazy loading, and caching of the persistent objects. Caching
enables ORM frameworks to hold repeatedly fetched data in memory, instead
of being fetched from the database in the next requests, causing deficiencies and
delayed responses, the objects are returned to the application from memory. Lazy
loading, another great feature of ORM frameworks, allows an object to be loaded
without initializing its associated objects until these objects are accessed.

ORM frameworks usually use mapping definitions, such as metadata, XML files,
or Java annotations, to determine how each class and its persistent fields should be
mapped onto database tables and columns. These frameworks are usually configured
declaratively, which allows the production of more flexible code.

Many ORM solutions provide an object query language, which allows querying the
persistent objects in an object-oriented form, rather than working directly with tables
and columns through SQL. This behavior allows the application to be more isolated
from the database properties.

Hibernate as an O/R Mapping solution
For a long time, Hibernate has been the most popular persistence framework in the
Java community. Hibernate aims to overcome the already mentioned impedance
mismatch between object-oriented applications and relational databases.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 1

[21]

With Hibernate, we can treat the database as an object-oriented store, thereby
eliminating mapping of the object-oriented and relational environments. Hibernate
is a mediator that connects the object-oriented environment to the relational
environment. It provides persistence services for an application by performing
all of the required operations in the communication between the object-oriented
and relational environments. Storing, updating, removing, and loading can be
done regardless of the objects persistent form. In addition, Hibernate increases the
application's effectiveness and performance, makes the code less verbose, and allows
the code to be more focused on business rules than persistence logic. The following
screenshot depicts Hibernates role in persistence:

Application

Driver

Database

H
ib

er
na

te SQL Statements

Result
JTA

JDBC

JNDI

Hibernate fully supports object orientation, meaning all aspects of objects, such as
association and inheritance, are properly persisted. Hibernate can also persist object
navigation, that is, how an object is navigable through its associated objects. It caches
data that is fetched repeatedly and provides lazy loading, which notably enhances
database performance. As you will see, Hibernate provides caches in two levels:
first-level built-in, and second-level pluggable cache strategies. The first-level cache
is a required property for any ORM to preserve object consistency. It guaranties that
the application always works with consistent objects. This is originated from the
fact that many threads in the application use the ORM to persist the objects which
might potentially be associated to the same table rows in the database. The following
screenshot depicts the role of a cache when using Hibernate:

Application

Driver

Database

H
ib

er
na

te SQL Statements

Result
JTA

JDBC

JNDI

C
ac

he

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate and Spring

[22]

Hibernate provides its own query language, which is Hibernate Query Language
(HQL). At runtime, HQL expressions are transformed to their corresponding
SQL statements, based on the database used. Because databases may use
different versions of SQL and may expose different features, Hibernate presents
a new concept, called an SQL dialect, to distinguish how databases differ.
Furthermore, Hibernate allows SQL expressions to be used either declaratively or
programmatically, which is useful in specific situations when Hibernate does not
satisfy application persistence requirements.

Hibernate keeps track of object changes through snapshot comparisons to prevent
unnecessary updating.

Other O/R Mapping solutions
Although Hibernate is the most popular persistence framework, many other
frameworks do exist. Some of these are explained as follows:

Enterprise JavaBeans (EJB): It is a standard J2EE (Java 2 Enterprise Edition)
technology that defines a different type of persistence by presenting entity
beans. Mostly, for declarative middleware services that are provided by
the application server, such as transactions, EJB may be preferred for
architecture. However, due to its complexity, nontransparent persistence,
and need for a container (all of which make it difficult to implement, test,
and maintain), EJB is less often used than other persistence frameworks.
iBatis SQL Map: It is a result set–mapping framework which works at the
SQL level, allowing SQL string definitions with parameter placeholders in
XML files. At runtime, the placeholders are filled with runtime values, either
from simple parameter objects, JavaBeans properties, or a parameter map. To
their advantage, SQL maps allow SQL to be fully customized for a specific
database. To their disadvantage, however, these maps do not provide an
abstraction from the specific features of the target database.
Java Data Objects (JDO): It is a specification for general object persistence
in any kind of data store, including relational databases and object-oriented
databases. Most JDO implementations support using metadata mapping
definitions. JDO provides its own query language, JDOQL, and its own
strategy for change detection.
TopLink: It provides a visual mapping editor (Mapping Workbench) and
offers a particularly wide range of object, relational mappings, including a
complete set of direct and relational mappings, object-to-XML mappings,
and JAXB (Java API for XML Binding) support. TopLink provides a rich
query framework that supports an object-oriented expression framework,
EJB QL, SQL, and stored procedures. It can be used in either a JSE or a
JEE environment.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 1

[23]

Hibernate designers has borrowed many Hibernate
concepts and useful features from its ancestors.

Hibernate versus other frameworks
Unlike the frameworks just mentioned, Hibernate is easy to learn, simple to use,
comprehensive, and (unlike EJB) does not need an application server. Hibernate is
well documented, and many resources are available for it. Downloaded more than
three million times, Hibernate is used in many applications around the world. To
use Hibernate, you need only J2SE 1.2 or later, and it can be used in stand-alone or
distributed applications.

The current version of Hibernate is 3, but the usage and configuration of this version
are very similar to version 2. Most of the changes in Hibernate 3 are compatible with
Hibernate 2.

Hibernate solves many of the problems of mapping objects to a relational
environment, isolating the application from getting involved in many persistence
issues. Keep in mind that Hibernate is not a replacement for JDBC. Rather, it can
be thought of as a tool that connects to the database through JDBC and presents an
object-oriented, application-level view of the database.

Hibernate architecture
The following screenshot depicts the main participants in the Hibernate architecture:

Application Database

Hibernate
Configuration

(XML/properties)

Mapping Definitions
(XML/Annotations)

Hibernate

Pe
rs

is
te

nt
 O

bj
ec

ts

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate and Spring

[24]

As the screenshot shows, the main players are Hibernate configuration file(s),
mapping definitions, and persistent objects. At the heart of Hibernate is its
configuration. This configuration is always presented by an XML, or a properties
file and includes the relevant database information, such as database username,
password, URL, driver class, and SQL dialect that Hibernate needs for connecting
to the database, communicating with it, and performing persistence operations.

Persistent objects form another part of the Hibernate architecture. These objects
are what we will persist in the database. These entity objects and their classes, as
upcoming chapters explain, do not need to exhibit any special behavior, except that
they must follow some POJO rules.

In addition to the Hibernate configuration file and the persistent objects, Hibernate's
architecture uses other XML documents, which define how application objects
should be mapped to database tables. These documents specify the respective
table of each entity class, the mapping of each class's field to its respective table
column, and sometimes other mapping information, such as object associations and
inheritance. These files have a simple syntax, making them easy to develop and
maintain. However, some utility tools that ship with Hibernate let you automatically
generate the mapping files, based on the application classes or database schema, and
also allow you to modify them in a graphic tool.

Although these objects are the main players in the Hibernate architecture, a
Hibernate application's runtime architecture is not limited to them. As we will see
in the chapters that follow, the most significant runtime objects are Configuration,
SessionFactory, Session, and Transaction.

Hibernate can be used as simply as follows to store or retrieve a Student object:

Configuraion cfg = new Configuration();
cfg.configure();
SessionFactory sessionFactory = cfg.buildSessionFactory();
Student student = …//a new instantiated student object
Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
session.save(student);
tx.commit();
session.close();

Here, we have just configured Hibernate, started a transaction, stored the student
object, committed the transaction, and finally disconnected from Hibernate. These
are actually the required operations to interact with Hibernate. The configuration
includes setting up Hibernate to work with a particular database with special
behavior. Every Hibernate interaction should be done inside a transaction, which
justifies the next step. Don't worry, all of these concepts with their usages will be
explained in the future chapters.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 1

[25]

What is Spring
Now that you've read a bit about Hibernate's background, it is time to look at Spring
and what it has to offer. Here, we'll take a quick look at Spring, saving the details for
later chapters.

Spring is an ambitious framework that aims to be a complete solution for entire
JEE applications. Unlike Hibernate, which works merely on the persistence tier,
Spring is a multitier framework which offers a wide range of services. It makes JEE
development easier, by providing a clean separation of concerns, decoupling an
application's components, and minimizing complexities typically encountered in
sophisticated JEE environments.

Choosing an appropriate solution for a Java application, particularly when it is
built with open-source tools, is a common challenge in application design. This
is another challenge that Spring aims to address. The challenge starts when you
encounter a large number of open-source technologies that may be used for the
same purpose, such as Struts, WebWork, JSF, or Tapestry for web, and Hibernate,
JDO, and iBatis for the persistence tier. Spring lets you use a large variety of
open-source tools behind the scenes, without needing large amounts of code
or coupling the application too closely to the underlying frameworks.

Spring is also called a lightweight framework, since it replaces frameworks that are
restrictive and cumbersome to use, such as EJB, that are already offered by JEE.

Spring is modularized with several components. Each component provides a
particular service. The following sections summarize some of these.

Inversion of Control container
Inversion of Control (IoC) is the technology most identified with Spring. With
the IoC core container, Spring enables the management of object dependencies by
pushing dependencies into objects at runtime, instead of letting the objects pull
their dependencies from their environment. This approach has many advantages:

All application classes are designed as simple as possible with
minimum behaviors, and with their only required properties they
will be well documented.
All application classes are self-documented, and the documentation is always
up-to-date.
No class has its own configuration management, which allows more
manageable code.
The application leaves configuration management to the framework.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate and Spring

[26]

IoC increases consistency in configuration management, since such
management is accomplished by the framework.
The application has no need for any configuration management code since
the framework handles this common aspect of every application.

Chapter 10 discusses Spring's Inversion of Control in depth.

Aspect-oriented programming framework
Aspect-oriented programming (AOP) is the perfect complementary approach
to IoC, solving common problems related to J2EE design. AOP allows us to
consolidate functionality, which would be otherwise scattered in different places,
in a single place. Managing transactions is an example of this functionality. With
Spring, transaction management occurs in a single place and is not scattered in
persistence methods.

AOP complements object-oriented programming (OOP) by introducing a new
concept, called concerns or aspects, to model real-world objects. Concerns are
processes that are not directly related to the object hierarchy. Instead, they spread
over sets of operations. For example, logging, security, and transaction are common
examples for a concern, since they should be applied to sets of methods without any
relationship to the object hierarchy.

Spring AOP has the following key benefits:

It prevents code duplication and provides more manageable code.
It allows declarative enabling or disabling concerns.

Aspect-oriented programming with Spring is fully discussed in Chapter 11.

Data access abstraction
Spring allows consistent data access to be implemented with solid abstraction. This
is carried out through a rich hierarchy of exceptions and a set of helper classes, for
working with a wide range of persistence technologies.

We'll look at Spring's Data Access Abstraction and how Spring is integrated with
Hibernate in Chapter 13.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 1

[27]

Transaction abstraction
Spring provides a transaction abstraction layer over JTA (Java Transaction API)
global transactions, which span multiple transactional resources. They are managed
by an application server, or local transactions managed by JDBC, Hibernate,
JDO, or any other persistence technology. It allows coding transactions, either
programmatically or declaratively. These topics are discussed in Chapter 12.

MVC web framework
Spring provides a rich, powerful web framework based on the
Model-View-Controller (MVC) pattern. The aim of the framework, like
any other web framework, is to simplify web development. It allows a variety of
different view technologies, such as JavaServer Pages, Velocity, and iText PDF
to be used. You can use MVC with Spring's other services, such as AOP and IoC.
Furthermore, Spring can be integrated with other web frameworks, including Struts,
WebWork, Tapestry, and JSF. Discussing Spring's web framework is beyond this
book's scope. However, we will take a quick look at it, along with its alternatives, to
give you a sense of how, in practice, Spring can be used to make web development
easier and solve typical problems related to web applications.

Chapter 14 explains in detail the different strategies Spring offers for supporting
web frameworks.

Testing support
Spring applications are more readily testable than other applications. This is because
Spring applications rely on POJOs, which do not call any Spring APIs, and their
dependencies are normally expressed in the form of interfaces that are easy to stub or
mock. Moreover, Spring provides some useful helper classes for implementing test
classes that test an application's interaction with Spring.

Moreover, Spring provides a lightweight container against traditional full-blown JEE
containers. The container provided by Spring can easily be started from the JUnit test
itself, which is not easy to do with EJB-3 and a JEE container.

Chapter 15 looks at using Spring's testing abilities to test Hibernate and
Spring applications.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

An Introduction to Hibernate and Spring

[28]

Summary
This chapter looked at Hibernate's background and explored how the framework
provides a bridge between the object-oriented and relational worlds. This is why
Hibernate is called an O/R mapping tool.

Enterprise JavaBeans are server-side components which provide another approach to
persisting Java objects. In addition, enterprise beans provide declarative middleware
services, such as transaction and security. Developing with enterprise beans is
not as easy as developing with Hibernate, and using entity beans also requires an
application server, which is difficult to set up, run, and test.

Hibernate architecture consists of three contributors: persistent objects, configuration
file(s), and mapping definitions. The Hibernate API comes with three Java interfaces
which are always involved in persisting the objects. These are org.hibernate.
Session, org.hibernate.SessionFactory, and org.hibernate.Transaction.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Preparing an Application to
Use Spring with Hibernate

Hibernate, like many other frameworks, must be configured before you can
use it. However, its configuration is very simple and straightforward. Besides
configuration, some other settings are required to use Hibernate. These include
setting up a database, creating the application structure, and adding extra
frameworks, such as Log4j and Ant to the project.

In this chapter, we will discuss the prerequisites to developing with Hibernate. The
chapter explains the configuration steps, based on the priority you should take in
a typical application. Note that, not all steps are mandatory when using Hibernate.
However, taking the optional steps is highly recommended.

We'll start our discussion by setting up a database. Choosing a database may depend
on your application requirements, such as robustness, performance, and price, and
on other special features that your application needs. Fortunately, as a persistence
service provider, Hibernate supports a range of databases, allowing you to choose a
database that you prefer, or as your application requirements dictate. This book uses
a simple, lightweight database, HSQLDB, for its examples.

After you've set up a database, the next step is getting a Hibernate distribution. Next,
set up the project hierarchy, which includes creating source and build directories,
installing a build framework (such as Ant), configuring Hibernate, and finally
adding the Hibernate libraries, the database driver, and any other frameworks
to the application classpath.

Lets discuss these steps in more detail.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Preparing an Application to Use Spring with Hibernate

[30]

Setting up the database
Whether or not you are using Hibernate in your application, you need a database to
store your application data. Therefore, your first step is to set up and run a database.
Although there are no restrictions in choosing a database when you use Hibernate,
we will use a simple, lightweight database called HSQLDB in this book. This lets
us concentrate on Hibernate and explore its features, without getting involved in
database details.

Getting and installing HSQLDB
HSQLDB is an open-source database that has been fully developed in the Java
language. It's a small, lightweight database that is easy to install and use, and it
is supported by Hibernate. To get HSQLDB, go to its home page at http://www.
hsqldb.org, and download the latest version in the form of a compressed file. To
install, you only need to extract the file anywhere in your file system.

As the next sections explain, you must also put the database driver, hsqldb.jar, in
the application classpath.

Configuring and running HSQLDB
Although HSQLDB supports different types of databases, and has many features
that make it flexible and reliable, discussing HSQLDB in detail is beyond this book's
scope. However, to proceed, we need some primary information about HSQLDB
and its configuration. Interested readers can get more information by studying the
documentation packed with its download.

Extract the compressed file somewhere on your file system. After extracting the
compressed file, you need to configure HSQLDB before you can use it. Configuring
HSQLDB is easy and straightforward. It is simply performed through a properties
file, which includes all of the configuration information.

Create the server.properties file with the following content in C:/hsqldb, the
directory where you've installed HSQLDB:

Filename: C:\hsqldb\server.properties
Hibernate examples database - create a database on the default port.
Specifies the path to the database files –
note that the trailing slash IS required.
server.database.0=file:/hsqldb/hibernate/
Specifies the name of the database
server.dbname.0=hiberdb

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 2

[31]

The properties file entries represent the configuration arguments of the HSQLDB
database. In our case, the file includes only two entries:

server.database: This entry determines the relative path of the database
inside the HSQLDB root directory.
server.dbname: This entry assigns a name to the specified database, by
which we can then refer to the database.

Note the use of 0 at the end of the server.database and server.dbname properties.
This number specifies the index of the database being configured and is incremented
for the second database, and so on.

HSQLDB server modes
HSQLDB can run in different modes based on the protocol used for communications
between the client and server. The following list gives a brief review on the different
server modes that HSQLDB supports:

Hsqldb server: The fastest way for running a database server, this mode uses
a proprietary communications protocol.
Hsqldb web server: This mode is used when access to the computer hosting
the database server is restricted to the HTTP protocol. The only reason for
using this mode is restrictions imposed by firewalls on the client or server
machines. It should not be used where there are no such restrictions.
Hsqldb servlet: This uses the same protocol as the web server. It is used
when a separate servlet engine (or application server), such as Tomcat or
Resin, provides access to the database. Since the database server sits on the
servlet engine to be used, this mode cannot be used without a servlet engine.
In-process (stand-alone) mode: This mode runs the database engine as part
of your application program in the same Java Virtual Machine. For most
applications, this mode can be faster, as the data is not converted and sent
over the network. The main drawback is that, by default, it is not possible
to connect to the database from outside your application. As a result, you
cannot check the contents of the database with external tools while your
application is running.
Memory-only databases: In this mode, HSQLDB holds the data entirely in
memory without persisting it to disk. Since this mode does not use the disk,
it is useful only for internal processing of application data, such as applets.

The HSQLDB documentation, which is packed with its distribution, is the best
reference for more detailed information about these modes.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Preparing an Application to Use Spring with Hibernate

[32]

After preparing the server.properties file, run the following command from the
same directory as the server.properties file, in order to run HSQLDB in the mode
of server:

java -classpath c:/hsqldb/lib/hsqldb.jar org.hsqldb.Server

This command starts HSQLDB, and the following output is displayed in the
command window:

C:\hsqldb>java -classpath c:/hsqldb/lib/hsqldb.jar org.hsqldb.Server

[Server@1a758cb]: [Thread[main,5,main]]: checkRunning(false) entered

[Server@1a758cb]: [Thread[main,5,main]]: checkRunning(false) exited

[Server@1a758cb]: Startup sequence initiated from main() method

[Server@1a758cb]: Loaded properties from [C:\hsqldb\server.properties]

[Server@1a758cb]: Initiating startup sequence...

[Server@1a758cb]: Server socket opened successfully in 211 ms.

[Server@1a758cb]: Database [index=0, id=0, db=file:/hsqldb/hibernate/,
alias=hiberdb] opened sucessfully in 1702 ms.

[Server@1a758cb]: Startup sequence completed in 2053 ms.

[Server@1a758cb]: 2008-09-03 11:42:23.327 HSQLDB server 1.8.0 is online

[Server@1a758cb]: To close normally, connect and execute SHUTDOWN SQL

[Server@1a758cb]: From command line, use [Ctrl]+[C] to abort abruptly

You can shut down the server with the SHUTDOWN SQL command, issued as an SQL
query, in the Database Manager (covered in the next section).

You can also shut down the HSQLDB server by terminating its process, done easily
by simultaneously pressing the Ctrl and C keys. However, this method is clean and
safe, because HSQLDB is not allowed to complete its tasks (for example, storing all
data in memory to disk and closing the database files) in a persistent and safe way.

Now that we have successfully executed HSQLDB, we can continue our work by
creating the tables that we need.

Managing HSQLDB
The HSQLDB distribution ships with a utility application called Database Manager.
Database Manager is a tool for managing the database schemas to create, edit, or
delete tables, and perform many other database operations. To run this application,
go to the demo directory and execute the runManagerSwing.bat batch file. You'll
then see a window like the following one:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 2

[33]

In the application's input dialog, enter the driver class name, URL, username, and
password of the database, as shown in the following table:

Option Value
Setting Name hibernate-exercise

Type HSQL Database Engine Server
Driver org.hsqldb.jdbcDriver

URL jdbc:hsqldb:hsql://localhost/hiberdb

User sa

Password --

Notice that we've chosen HSQL Database Engine Server as the value for the Type
option. The Type option determines what kind of server you want to run.

sa and blank are the default values for username and password when you create a
schema in HSQLDB. Although these are enough for our application, you can create
new accounts, as well. Please see HSQLDB's website for more information.

hiberdb is the name of the database schema that we have already defined in the
server.properties file (and we use that for the examples in this book). After you've
entered the information, click OK and connect to the specified database schema.

The manager then lets you enter the SQL statements in the top section of this
window. You can then execute them by clicking the Execute button.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Preparing an Application to Use Spring with Hibernate

[34]

Getting a Hibernate distribution
To use Hibernate in your application, you first need to get it. Therefore, browse to
the homepage of Hibernate at http://www.hibernate.org, choose the Hibernate
Core package, and download the latest version in the form of a .zip or .tar.gz
compressed file.

Extract the compressed file in a directory on your system. This directory will include
the Hibernate library hibernate3.jar, optional and required JAR files in the lib
subdirectory, and Hibernate documentation in the doc subdirectory.

Getting a Spring distribution
As with Hibernate, you must download the full distribution version of Spring
from its website: http://www.springframework.org. The file, which downloads
as a .zip or .tar.zip file, contains separate JAR files as Spring libraries in the
dist/modules subdirectory. (The number of JAR files depends on the version of
Spring.) Each JAR file contains classes of a particular Spring module. For instance,
spring-aop.jar contains all of the classes you need to use Spring's AOP features in
your application. Although not all of these JAR files are required when you are using
Spring with Hibernate, you can simply add all of them to the project lib directory.

Setting up the project hierarchy
Now that all of the prerequisites for application development are ready, it's time to
set up the project. In this section, we'll look at a general project structure that you can
apply to your Spring and Hibernate projects. We'll use this structure in the examples
throughout this book.

As the first step, we'll set up the project hierarchy, which includes building the basic
directories and creating the needed files. The project hierarchy depends on your
application type and the frameworks that your application uses. As a developer, you
should note that the basis of your development is providing a clean environment, in
which all files are classified, and where you always have full control of changes as
the application grows. Here, we'll see a typical application structure that satisfies the
most typical application requirements.

First, create and name the application work directory. This directory contains all
of the application source files, build files, script files, and so on. This directory can
include the following subdirectories:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 2

[35]

src for the application source files
out for the compiled classes
test for unit tests
lib for libraries used by the application

If you are working on a web application, such as the sample application discussed in
this book, you may need an additional directory in src. The following figure shows a
sample layout for this directory:

The build.xml and pom.xml files, which are the Ant and Maven files respectively,
and other configuration files (such as log4j.properties for configuring logging)
should be placed in the application's root directory. You must also add all of the
necessary JAR library files, such as hibernate.jar, spring.jar, the database
driver, and so on, to the application classpath.

Put the required libraries in the lib directory
Since you are developing a Hibernate with Spring project, you need to put their
libraries, and also their dependencies, in your project. Therefore, when you create
the structure of your project, put Hibernate.jar with its dependencies, and
spring.jar with its required dependencies. Please note that with Hibernate you
need almost all dependencies, but since Spring is a general and throughout project,
you may just need a subset of Spring dependencies. A typical lib directory of a
Hibernate with Spring project may look like the following:

+lib
 antlr.jar
 asm.jar
 asm-attrs.jars
 c3p0.jar
 cglib.jar
 commons-collections.jar
 commons-logging.jar
 dom4j.jar

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Preparing an Application to Use Spring with Hibernate

[36]

 hibernate3.jar
 hsqldb.jar
 jta.jar
 junit-3.8.2.jar
 log4j-1.2.15.jar
 slf4j-api-1.5.0.jar
 slf4j-log4j12-1.5.0.jar
 spring.jar

Setting up Ant or Maven in the project
As the next step, you need a build framework in your project, to automatic the build
and test process. The common solutions for this are the Ant and Maven projects.
Ant is one of the most popular frameworks in the Java world, and plays an essential
role in Java applications. It provides an automatic and reliable build process for
your application, allowing you to define a repeatable and reliable build process in
XML format. Maven is another build framework with a somewhat similar role in
Java applications, but does more than what Ant does. Maven can manage the project
dependencies and resolve them in sophisticated projects, which may consist of many
other libraries and projects. Almost all of today's projects use Maven as the build
framework, so using Maven is preferred over Ant. Here, adding and setting up both
frameworks are briefly discussed. First, let's look at Ant.

To get Ant, go to http://ant.apache.org and download the latest version. Then,
extract the compressed zip file in a directory in your file system.

To complete the installation process, you need to perform the following two tasks:

1. Define the ANT_HOME variable (which points to the Ant's root directory) as an
environment variable.

2. Add Ant's bin subdirectory to the system or command line path.

To check whether Ant has been installed correctly, run the ant command in a
command window. You should see the following output:

> ant -version

Apache Ant version 1.6.1 compiled on February 12 2004

The message identifies your version of Ant.

The build process for any application accomplished by Ant is defined in an XML file.
This file, usually called the build file or the Ant file, starts with the XML definition
and is followed by a <project> element as root. All of the process steps are defined
inside the project through target elements, one of which is the default.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 2

[37]

Targets contain task elements and can depend on other targets. For example, you
might have a target for compiling, and a target for creating a distributable archive file.
As you can only build the distributable file after you have compiled the source code,
the distribute target depends on the compile target. Ant resolves these dependencies.

I won't go into detail here, since Ant is fairly straightforward and widely used.
To get more information about Ant, refer to its excellent documentation at
http://ant.apache.org/manual.

To get Maven, go to http://maven.apache.org/run-maven/index.html and
download the latest version. Similar to Ant, you need to perform two other tasks
as follows to complete the installation:

1. Add the Maven's bin directory to the system or command line path.
2. Increase the memory available to Maven with setting MAVEN_OPTS -Xms128m

-Xmx512m=

Whether you are using Ant or Maven, you need to define a
system property, JAVA_HOME, which refers to the root of the
JDK installation directory.

To get more information about Maven and its usage, refer to Maven website at
http://maven.apache.org/run-maven/index.html.

Summary
This chapter demonstrated the basic steps for preparing to use Hibernate. The first
step is to install and run a database engine. HSQLDB is a simple, lightweight, and
easy-to-use open-source database. Therefore, it lets us learn Hibernate without
getting involved in database details.

After setting up a database, the next steps are getting Hibernate and setting up the
project hierarchy. Although there are some templates for the application structure,
this structure mostly depends on the application you are working on.

Getting Ant or Maven and adding them to the project are the next steps. Ant is a
utility project that provides an automatic build process. To start using Ant, extract
Ant in a directory, set up the ANT_HOME variable in your system properties, add its
bin subdirectory to the System PATH, and create and set up a build file. Maven is
another project which is used to build the project and manage project dependencies.
Like Ant, to use Maven, you need to set up the MAVEN_HOME variable in the system
properties and add its bin subdirectory to the PATH of the system.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate
and Spring

Getting started with a new framework is often the most difficult part of learning
it. In our case, there are two frameworks to learn, both integrated with each
other, containing many details, and used for different purposes in the application
architecture. Therefore, before we dig into the details, it's important to understand
how to use these frameworks within the context in which they operate. With this
understanding in place, you'll learn the details more smoothly, with a less steep
learning curve.

This chapter provides a quick look at different aspects of persistence that typically
arise during application development. We'll discuss how Hibernate handles
these cases and simplifies development of the persistence layer. We'll then look at
the aspects of Spring that are involved in the persistence area of the application
architecture. Because the main goal of this chapter is to demonstrate the basic usage
of Hibernate and Spring, simple examples will explain Hibernate's and Spring's basic
features without presenting anything complicated. First, I'll use a simple Java class, a
simple database table, and a simple mapper class to explain the core Hibernate API
and the basic steps in using Hibernate. After that, when we discuss the fundamental
concepts behind Hibernate, we'll look at other aspects, including the mapping of
objects association and inheritance, querying persistent objects, object relations and
navigability, managing transactions, lazy loading, caching, and practical Hibernate
configuration. At the end of this chapter, I'll review two basic features of Spring:
Inversion of Control (IoC) and Aspect-Oriented Programming (AOP), looking
at how these are used in mixed Hibernate-Spring applications.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[40]

Getting started with Hibernate
Hibernate may be used in many different situations. It can be used when you're
developing a new application from scratch, extending an existing application, or
developing a new application which works with an existing database schema.

Usually, it's best to develop a new Hibernate application from scratch since you
can design your database schema flexibly, based on application requirements
and Hibernate best practices. When you use an existing schema in developing an
application, you must work with the schema, which is not necessarily consistent
with new requirements, so you must make "dirty" changes simply to make the
application work. However, when the database schema exists, utility tools can help
you to analyze the schema and guide you in designing appropriate Java classes that
represent the data.

Here, we'll start with the simplest case and discuss how to start a new Hibernate
application from scratch. When you're developing a new Hibernate application, after
you have configured it, you should do the following three things:

Design and implement persistent classes, which represent the application's
live data: The business processes inside the application design and produce
persistent objects. In fact, they contain significant information to be kept
in a persistent store for future use. As the first step in developing a new
Hibernate application, you need to design the object model with which the
application works.
Design and create database tables: This step involves designing the
database schema that encompasses the live data. Most of the time, tables in
the database schema correspond to each class in the object model and are
designed to hold the data contained by these objects.
Creating mapping metadata: Mapping metadata is the data, defined in
the Java code as annotations or in XML documents as individual files,
that describes the relationship of persistent classes to database tables. This
metadata tells Hibernate how to map the object model to its respective
database schema.

Upcoming chapters discuss all of these steps in detail. Throughout this book, I present
a sample application, a comprehensive educational system, to demonstrate how to
perform these steps in a real application. This demo application manages information
related to all schools, teachers, students, and courses in an educational system. It
provides add, edit, and delete operations for teachers, students, and courses, and
handles the associated business rules. In this and the subsequent chapters, individual
parts of this application will explain working with Hibernate in detail.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[41]

Designing and implementing persistent
classes
As you remember from Chapter 1, Student objects can be persisted into the STUDENT
table. Although there would be other persistent classes such as Course, Teacher,
and School in our application, we will not involve those here in order to keep our
example as simple as possible.

The Student class looks like the code here:

package com.packtpub.springhibernate.ch03;

public class Student {

 private int id;
 private String firstName;
 private String lastName;

 //zero-arguement constructor
 public Student() {
 }

 public Student(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[42]

 Student student = (Student) o;

 if (id != student.id) return false;
 if (firstName != null ? !firstName.equals(student.firstName) :
 student.firstName != null) return false;
 if (lastName != null ? !lastName.equals(student.lastName) :
 student.lastName != null) return false;

 return true;
 }

 public int hashCode() {
 int result;
 result = id;
 result = 29 * result + (firstName != null ? firstName.hashCode()
 : 0);
 result = 29 * result + (lastName != null ? lastName.hashCode()
 : 0);
 return result;
 }
}

This class has simple properties: id, firstName, and lastName, all private, and
accessed by their setter and getter methods.

Classes with no special behavior, only containing some properties
with their setter and getter methods, are called Plain Old Java Object
(POJO). POJO classes have critical roles in many new frameworks such
as Hibernate and Spring. All of the persistent objects that are stored or
retrieved by Hibernate are POJOs. POJO rules, and characteristics of
Hibernate persistent classes, are discussed in detail in Chapter 5.

This class also has a zero-argument constructor. This is an optional
(and recommended) requirement that persistent classes in Hibernate
should meet. Chapter 5 discusses this and other requirements for persistent
classes in Hibernate.

Creating Database Tables
Now that the Student class has been designed and implemented, we need a table
in the database to store the student objects. Usually, there should be a database
table corresponding to each persistent class for the persistence of related objects.
The following screenshot shows the STUDENT table with the columns in the
hiberdb database schema, which was set up in Chapter 2.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[43]

ID
FIRST_NAME
LAST_NAME

BIGINT, PK
VARCHAR(50)
VARCHAR(50)

STUDENT

The SQL expression used to create this table is shown below:

create table STUDENT (
 ID bigint generated by default as identity (start with 1),
 FIRST_NAME varchar(50),
 LAST_NAME varchar(50),
 primary key (ID)
)

We may use the HSQL Database Manager to create the table, as shown here:

If your query syntax is invalid, or if the manager application is unable to execute the
query, a dialog box reports the query execution failure.

If you are developing an application from scratch, you can use
SchemaExport, shipped with Hibernate, to generate your schema from
the mappings. Additionally, it is also possible to use SchemaUpdate to
update an existing schema based on the modified mappings.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[44]

Creating mapping metadata
After you've designed the Student class and created the STUDENT table, you need
to give Hibernate information about the mapping between the Student class fields
and the STUDENT table columns. For this purpose, Hibernate lets you use either
XML documents, as individual mapping files, or annotations in the Java code. The
mapping metadata specifies how to map a persistent class to a database table. In this
book, I discuss using both approaches: annotations are newer and are used more, but
the XML approach isn't still deprecated.

In our example, we can use an XML file to define how each Student property is
stored, retrieved, updated, and removed from a STUDENT column when a Student
instance is stored, retrieved, updated, or removed from the database.

As a mapping file, Student.hbm.xml tells Hibernate that id, firstName, and
lastName of the Student class should be stored, in the respective ID, FIRST_NAME,
and LAST_NAME columns of the STUDENT table. The following listing shows this file:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch03.Student"
 table="STUDENT">
 <id name="id" type="int" column="id">
 <generator class="increment"/>
 </id>
 <property name="firstName" column="FIRST_NAME" type="string"/>
 <property name="lastName" column="LAST_NAME" type="string"/>
 </class>
</hibernate-mapping>

As a convention, it's recommended to name the mapping files as className.hbm.
xml, in which className is the name of the matching persistent class. It's also
recommended that each mapping file be placed in the same package as its persistent
class. This simplifies the use of Hibernate and helps with application maintenance.
For instance, if the Student class's package is com.packtpub.springhibernate.
ch03, then Student.hbm.xml would be in the com/packtpub/springhibernate/
ch03 directory with the Student class. This approach lets you manage mapping files
based on the packages of their respective persistent classes.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[45]

The content of all mapping files begins with the XML version and encoding
identifiers, followed by a DOCTYPE declaration:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

The DOCTYPE instruction identifies the document type definition of the mapping
document. As we use Hibernate 3 in this book, the DOCTYPE instruction refers to
hibernate-mapping-3.0.dtd. If you use a different version of Hibernate, specify
the corresponding DTD document in the same way.

After DOCTYPE, the <hibernate-mapping> element is the root element and specifies
the actual mappings. Inside the root element, at least one <class> element should
exist. Each <class> element defines the mapping of a persistent class to a database
table. For our sample application, we use a nested <class> element inside the root
to determine the mapping of our persistent class, Student, to its respective
table, STUDENT:

<?xml version="1.0"?>
<!DOCTYPE … >
<hibernate-mapping>
 <class>
 </class>
</hibernate-mapping>

As we currently have only one class, Student, we have used only one <class>
element inside the mapping document. However, when there are more persistent
classes in the application, you can use other <class> elements inside the root
element to map them to their respective tables.

The <class> element comes with two attributes: name and table. These attributes
specify, respectively, the fully qualified class name you want to map, and the
database tables to which persistent objects are mapped:

<class name="com.packtpub.springhibernate.ch03.Student"
 table="STUDENT">

The <class> element and its nested elements specify all relevant information needed
to map the persistent class to its database table.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[46]

The <id> element, coming as the first element inside <class>, uses the name, type,
and column attributes to indicate the object identifier name, the corresponding
Hibernate type for that identifier, and the table's primary key column which holds
the object identifier respectively. Additionally, the <id> element uses a nested
<generator> element to determine the Hibernate strategy for generating identifier
values. The following code shows the <id> element with its attributes and nested
<generator> element:

<id name="id" type="int" column="id">
 <generator class="increment"/>
</id>

A Hibernate type is a representation of the SQL type of the column in
which the property's value is stored. Hibernate uses these values when
it generates an SQL query to insert, update, delete, or perform any other
persistence operations. These types may also be used when the database
schema is generated from the mapping definitions. Hibernate types let the
application be isolated from the underlying database's actual SQL types.
At runtime, Hibernate types may be transformed to different SQL types
when different database engines are used with Hibernate. Hibernate
types are fully discussed in Chapter 7.

The nested <generator> element specifies how to generate an identifier value for a
new instance when the instance is stored. The value of the class attribute refers to a
Hibernate-included algorithm, according to which the identifier is generated. In this
case, we have chosen increment as the identifier generation strategy. This means
every identifier must be produced by incrementing the preceding one. Chapter 5
explains this and other algorithms.

After <id>, <property> elements appear as the next elements inside <class>, and
define the mapping of other class properties to table columns. Every <property>
element commonly comes with three attributes: name, column, and type, which
specify the name of the property, the table column, and the column's Hibernate
type respectively:

<property name="firstName" column="FIRST_NAME" type="string"/>
<property name="lastName" column="LAST_NAME" type="string"/>

Chapter 5 and Chapter 6 offer in-depth discussions of mapping concepts.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[47]

A simple client
Now that we've completed all three steps in designing and developing our Hibernate
project, which currently consists of only the Student class, the STUDENT table, and
the Student.hbm.xml file, the Hibernate API can interact with the database and
persist the objects.

The following listing shows an immature use of Hibernate to store an instance of the
Student class into the STUDENT table:

package com.packtpub.springhibernate.ch03;

import org.hibernate.cfg.Configuration;
import org.hibernate.SessionFactory;
import org.hibernate.Session;
import org.hibernate.Transaction;

public class PersistByHibernate {

 public static void main(String[] args) {

 //configuring Hibernate
 Configuration config = new Configuration();

 config.setProperty("hibernate.dialect",
 "org.hibernate.dialect.HSQLDialect");
 config.setProperty("hibernate.connection.driver_class",
 "org.hsqldb.jdbcDriver");

 config.setProperty("hibernate.connection.url",
 "jdbc:hsqldb:hsql://localhost/hiberdb");

 config.setProperty("hibernate.connection.username", "sa");

 config.setProperty("hibernate.connection.password", "");

 //introducing persistent classes to Hibernate
 config.addClass(Student.class);

 //obtaining a session object
 SessionFactory factory = config.buildSessionFactory();
 Session session = factory.openSession();

 //starting a transaction
 Transaction tx = session.beginTransaction();

 //persisting…
 Student student = new Student("Andrew", "White");

 session.save(student);

 //commiting the transaction
 tx.commit();
 session.close();

 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[48]

The class shown in the previous code uses Hibernate to save an instance of Student.
The process for all persisting operations, including save, load, update, and delete,
consists of the following steps:

1. Configuring Hibernate.
2. Obtaining a Session object.
3. Starting the transaction.
4. Performing persistence operation(s).
5. Committing or rolling back the transaction.

The next several sections cover these steps.

Configuring Hibernate
Before you can interact with Hibernate and perform any persistence operations,
you need to configure it. The basic configuration includes specifying the database
driver, URL, username, password, and dialect (discussed in upcoming chapters). It
also includes introducing the persistent class names or their mappings. All of these
settings are represented by a configuration object of type org.hibernate.cfg.
Configuration.

To set each property value, the Configuration class provides a setProperty()
method, which takes two arguments: the property name and the property value,
seen here:

public Configuration setProperty(String propertyName, String
 propertyValue)

For instance, invoking:

config.setProperty("hibernate.connection.driver_class",
 "org.hsqldb.jdbcDriver");

sets org.hsqldb.jdbcDriver as the value of hibernate.connection.driver_
class. The Configuration class also provides the addClass() method, which
introduces a persistent class to Hibernate:

public Configuration addClass(Class aClass) throws MappingException

Note that, both setProperty() and addClass() return an object of type
Configuration, allowing you to set properties by invoking a chain of
setProperty() or addClass() methods. I cover configuration in more
detail in Chapter 4.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[49]

Obtaining a session object
With Hibernate, all persisting operations, including save, load, update, and delete,
are performed through instances of org.hibernate.Session. As you will see,
these instances are not thread-safe. Session objects are not instantiated directly.
Instead, they are constructed by invoking the openSession() method of another
object called a session factory. A session factory is a heavyweight object of type
org.hibernate.SessionFactory. This object is thread-safe and responsible for
creating and managing session objects. It's analogous to a connection pool, which is
responsible for creating and managing database connection objects. Note that typical
applications need only one SessionFactory object for each database they use.
Chapter 4 gives an example of how to maintain this condition.

Like Session objects, SessionFactory is not instantiated directly. Instead,
it is constructed by invoking the buildSessionFactory() method of the
Configuration object that has already been created.

The following snippet shows the process of obtaining instances of SessionFactory
and Session:

//obtaining a session object
SessionFactory factory = config.buildSessionFactory();
Session session = factory.openSession();

Starting a transaction
Transaction management is an essential requirement in any application. It lets you
reliably perform a set of operations, as a unit of work. Both Hibernate and JDBC
let you mark the boundaries of a set of persistence operations to be performed as
a unit of work, whether all operations are done successfully or all are failed. In
Hibernate, you can call the beginTransaction() method of Session to obtain an
instance of type org.hibernate.Transaction. The Transaction object, in fact, is a
handler which lets you control the transaction execution, commit, or roll back when
persistence operations are done.

Hibernate automatically starts the transaction when the beginTransaction()
method of Session is invoked as follows:

Transaction tx = session.beginTransaction();
//performing operations

As the next section discusses, the started transaction should be committed or rolled
back after the persistence operation is done.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[50]

Performing the operation
After the transaction has begun, you can perform any desired persistence operations
with Hibernate. For this purpose, you can use the Session instance, which provides
distinct persistence methods, including save(), update(), saveOrUpdate(), and
so on. The Session API and persistence methods exposed through it are discussed in
Chapter 8.

Committing/rolling back the transaction
When persistence operations are performed, you can decide to commit or roll back
the already started transaction by invoking the commit() or rollback() method of
Transaction, respectively, as follows:

//decide to commit
if(every_thing_is_ok)
 tx.commit();
else //roll back
 tx.rollback();

Although, database operations always happen inside transactions (so you need to
manage transactions in your Hibernate application when persistence operations
are performed), you can leave transaction management to the database engine by
setting the connection.autocommit property to true in the configuration file, or
invoking the setAutoCommit(true) of the associated Connection object to Session
as follows:

session.connection().setAutoCommit(true);

Then, you will not need to start and then commit or roll back the transaction. The
database automatically handles transactions and performs every operation in a
single transaction.

Using auto-commit is mostly impossible. There are common situations
in a typical project that a persistent operation in the application
is performed with two or more database operations together.
Therefore, we need to manage transactions in the application
for each application-level operation.

Chapter 10 discusses transaction management in detail.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[51]

Hibernate declarative configuration
As with many other frameworks, you must configure Hibernate before you can use
it. The configuration process consists of two parts:

Object Mappings: Determine the object mappings that define how persistent
objects are mapped to their respective database tables.
Database-Relevant Information: Specify database-relevant information
to tell Hibernate how to connect to the database and perform persistence
operations. The basic configuration information is database driver, URL,
username, and password. However, configuration options are not limited
to these. Other significant configuration settings include using a container-
managed versus a non-container-managed data source, cache configuration,
transaction settings, minimum and maximum pool size, and connection
timeout value.

Earlier, we configured Hibernate programmatically. However, that approach is
not flexible enough to be used in a real project. Hibernate supports a declarative
approach for configuration, which makes it more flexible. You can configure
Hibernate declaratively, either through a properties file, or an XML file. The
following code is a sample configuration file named Hibernate.cfg.xml:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration SYSTEM
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <!-- database related configurations -->
 <property name="connection.driver_class">
 org.hsqldb.jdbcDriver
 </property>
 <property name="connection.url">
 jdbc:hsqldb:hsql://localhost/hiberdb
 </property>
 <property name="connection.username">sa</property>
 <property name="connection.password"> </property>
 <property name="pool_size">5</property>
 <property name="connection.autocommit">true</property>
 <property name="show_sql">true</property>
 <property name="dialect">
 org.hibernate.dialect.HSQLDialect</property>

 <!-- mapping files-->
 <mapping
 resource="com/packtpub/springhibernate/ch03/Student.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[52]

As you can see, configuration values are determined through <property> and
<mapping> elements. Each <property> element specifies a particular property
of Hibernate.

The following table explains the properties in the configuration file shown in the
listing above.

Property name Meaning
connection.driver_class refers to the database driver class name
connection.url specifies the database's URL
connection.username
connection.password

determines the database username and password

pool_size specifies the number of connection objects held in the
connection pool

connection.autocommit specifies whether each database operation is
performed in an individual transaction and is
committed automatically

show_sql determines whether Hibernate-generated SQL
statements are shown in either the application console
or the logging files

dialect specifies the database dialect used to connect to the
database (the dialect concept is discussed in the
next chapter)

The last part of the configuration file configures the mapping files. As mentioned,
Hibernate uses these files to map persistent classes to database tables. Each <mapping>
element takes a resource attribute, which refers to the relative path of the mapping
file. For example, the following mapping element specifies Student.hbm.xml, which is
located in the com.packtpub.springhibernate.ch03 relative path:

<mapping
 resource="com/packtpub/springhibernate/ch03/Student.hbm.xml"/>

The application's root directory commonly holds the Hibernate configuration file,
although you don't have to follow this practice. To configure Hibernate when this
file is in the root of the classpath, simply instantiate an object of the org.hibernate.
cfg.Configuration class and invoke its configure() method:

Configuration config = new Configuration();
config.configure();

Hibernate then automatically loads the defined settings in the configuration file.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[53]

When the configuration file is not in the root, specify the relative path of the file as
the configure() method's argument:

Configuration config = new Configuration();
config.configure("relative path");

Configuration details are discussed in Chapter 4.

Some issues in mapping
So far, we have used a simple persistent class, Student, in our example. As
mentioned in Chapter 1, most persistent classes are not so simple. Many are not
plain as they may be inherited from or associated with others. As a persistence
provider, Hibernate should handle these cases. We'll see more about this in Chapter
5. For now, let's look at how Hibernate caches objects, and how to query the objects
we've mapped.

Caching
Regarding performance enhancement, Hibernate provides two caches, each in a
different level. As the first-level cache, each Session object has its own cache, which is
also called transactional cache. This cache holds the persistent objects of Session, and
minimizes database interactions, thereby enhancing efficiency and performance.

A third-party cache provider provides the second-level cache, which is configured as
a plug-in in Hibernate. The second-level cache holds the repetitive persistent objects
associated with all session objects. The following screenshot depicts the role of these
two cache levels in Hibernate:

Application Hibernate Database

L2 Cache

Session L1 Cache

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[54]

When the application queries a persistent object, the Session instance initially checks
the first-level cache. If the object is not found, the instance checks the second-level
cache. If the object is not found in either the first-level or the second-level cache, it is
loaded from the database. Hibernate does not provide any way to enable or disable the
first-level cache. However, the second-level cache is optional, so you can ignore it or
configure Hibernate using any third-party cache provider. You can enable or disable
the second-level cache through general Hibernate configuration (for all persistent
objects), or in the mapping definitions (for particular objects).

Chapter 12 discusses Hibernate caching.

Querying objects
You can use the load() and get() methods of the Session instance to load a
particular persistent object. For example, you can use the load() method as follows
to load a Student instance with identifier value 41:

Student std = (Student) session.load(Student.class, new Long(41));

You can also use HQL to load persistent objects. With HQL, you can describe the
objects you are looking for with the from and where clauses, as with SQL. The
following statement simply queries the Student object with the identifier value 41:

List result = session.find("from Student as s where s.id=41");

The result is a java.util.List object, which contains the Student instance
associated with identifier value 41. Using HQL, you can specify conditions other
than the object identifier for the objects being loaded, or you can load many objects
instead of just one.

Hibernate also provides a rich query API, called the Criteria API, to
programmatically describe the objects being loaded, and then load them. The
following snippet shows the Criteria approach to load the Student instance
with the identifier value 41:

Criteria criteria = session.createCriteria(Student.class);
criteria.add(Restrictions.idEq(new Integer(41)));
List result = criteria.list();

As with HQL, the result object is a java.util.List object, which contains the
Student instance associated with the identifier value 41.

Although HQL and the Criteria API are interchangeable, in most cases, HQL is a
better fit than Criteria, and in particular cases Criteria may fit better than HQL.

All of these approaches are discussed in detail in Chapter 9.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[55]

Getting started with Spring
Chapter 1 introduced the Spring services that are typically involved in an
application's persistence tier. At its core, Spring provides Inversion of Control
(IoC). This is the main functionality with which Spring aims to simplify application
architecture. IoC affects all other services provided by Spring.

Here, we'll take a quick look at Spring IoC.

A simple case
In the educational system application, assume that a nonfunctional requirement
indicates that before execution of any of the application classes setter methods, the
setter method name, the old value, and the new value being set to the property
are printed in the application console, a database table, or a log file, based on
administrator preferences.

To handle this, the application uses three different classes, shown as follows;

SetterInfoConsolePrinter as this:
package com.packtpub.springhibernate.ch03;

public class SetterInfoConsolePrinter {
 public void print(String methodName, Object oldValue, Object
 newValue){
 System.out.println("[Method=" + methodName +
 "|Old Value=" + oldValue +
 "|New Value=" + newValue+"]");
 }
}

SetterInfoDBPrinter as this:
package com.packtpub.springhibernate.ch03;

public class SetterInfoDBPrinter {
 public void print(String methodName, Object oldValue, Object
 newValue){
 //connect to database and insert the information
 }
}

SetterInfoLogPrinter as this:
package com.packtpub.springhibernate.ch03;
public class SetterInfoLogPrinter {
 public void print(String methodName, Object oldValue, Object
 newValue){
 //insert the method information in the log file
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[56]

As you can see, all of these classes contain a common print() method, which prints
the setter method runtime arguments. (To keep the example simple, I have shown
only the implementation of SetterInfoConsolePrinter.) All of the application
classes setter methods use one of these three printer classes to print their information.
For instance, the Student class that uses the SetterInfoConsolePrinter class looks
like this:

package com.packtpub.springhibernate.ch03;

public class Student {

 private int id;
 private String firstName;
 private String lastName;
 private SetterInfoConsolePrinter printer = new
 SetterInfoConsolePrinter();

 //zero-argument
 public Student() {
 }

 public Student(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public void setId(int id) {
 printer.print("setId", this.id, id);

 this.id = id;
 }

 public void setFirstName(String firstName) {
 printer.print("setFirstName", this.firstName, firstName);

 this.firstName = firstName;
 }

 public void setLastName(String lastName) {
 printer.print("setLastName", this.lastName, lastName);

 this.lastName = lastName;
 }
 //getter methods
 //hashCode() and equals() methods

}

Note that, we have intentionally not shown the getter, hashCode(), and equals()
methods, which do not affect our example. In this case, it is obvious that if we want
to change the printing strategy to use a different destination, we must change all
classes and change the SetterInfoConsolePrinter class with an appropriate
printer class.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[57]

The code we have just implemented can be refactored by adding a
SetterInfoPrinter interface and a SetterInfoPrinterFactory class. The
SetterInfoPrinter outlines the print() method as the common method for
all printer classes, and the SetterInfoPrinterFactory class acts as a factory for
printer classes, allowing centralized control of the printer class instantiation. This is
SetterInfoPrinter:

package com.packtpub.springhibernate.ch03;

public interface SetterInfoPrinter {
 public void print(String methodName, Object oldValue, Object
 newValue);
}

And here is SetterInfoPrinterFactory:

package com.packtpub.springhibernate.ch03;

public class SetterInfoPrinterFactory {

 public static SetterInfoPrinter getSetterInfoPrinter(){
 return new SetterInfoConsolePrinter();
 }
}

All printer classes now need to implement the SetterInfoPrinter interface, so we
will have SetterInfoConsolePrinter as follows:

package com.packtpub.springhibernate.ch03;

public class SetterInfoConsolePrinter implements SetterInfoPrinter{
 public void print(String methodName, Object oldValue, Object
 newValue){
 System.out.println("[Method=" + methodName +
 "|Old Value=" + oldValue +
 "|New Value=" + newValue+"]");
 }
}

And SetterInfoDBPrinter as this:

package com.packtpub.springhibernate.ch03;

public class SetterInfoDBPrinter implements SetterInfoPrinter{
 public void print(String methodName, Object oldValue, Object
 newValue){
 //connect to database and insert the information
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[58]

And SetterInfoLogPrinter as this:

package com.packtpub.springhibernate.ch03;
public class SetterInfoLogPrinter implements SetterInfoPrinter{
 public void print(String methodName, Object oldValue, Object
 newValue){
 //insert the method information in the log file
 }
}

The Student class, and other classes, can now use the SetterInfoPrinterFactory
class to obtain a printer class. Here is the refactored Student class that uses
SetterInfoPrinterFactory:

package com.packtpub.springhibernate.ch03;

public class Student {

 private int id;
 private String firstName;
 private String lastName;
 private SetterInfoPrinter printer;

 //zero-argument
 public Student() {
 printer = SetterInfoPrinterFactory.getSetterInfoPrinter();
 }

 public Student(String firstName, String lastName) {
 this();
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public void setId(int id) {
 printer.print("setId", this.id, id);
 this.id = id;
 }

 public void setFirstName(String firstName) {
 printer.print("setFirstName", this.firstName, firstName);
 this.firstName = firstName;
 }

 public void setLastName(String lastName) {
 printer.print("setLastName", this.lastName, lastName);
 this.lastName = lastName;
 }
 //getter methods
 //hashCode() and equals() methods
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[59]

In this class, we have replaced the instance of the concrete
SetterInfoConsolePrinter with an instance of SetterInfoPrinter. The
class constructor uses the SetterInfoPrinterFactory class to obtain a
SetterInfoPrinter instance when the Student class is instantiated. The only other
constructor class calls the default constructor to guarantee that the printer instance is
always instantiated.

Now, our code is more manageable, that is, if the printing strategy changes, only
SetterInfoPrinterFactory requires modification. The following code snippet
shows a simple Java program that instantiates a Student object:

package com.packtpub.springhibernate.ch03;

public class Main {
 public static void main(String[] args) {
 Student student = new Student();
 student.setId(41);
 student.setFirstName("John");
 student.setLastName("White");
 }
}

The program's execution result is as follows:

[Method=setId|Old Value=0|New Value=41]

[Method=setFirstName|Old Value=null|New Value=John]

[Method=setLastName|Old Value=null|New Value=White]

Although the code we have developed so far works very well, there are still two
maintenance problems:

Developers must worry about the SetterInfoPrinter instantiation in the
constructor of the classes
Developers should be careful about invoking the print() method before
setting a new value for each property

Let's see how Spring IoC can solve the first problem. The second problem is solved
with Spring AOP, which is outside the scope of this chapter. However, you can read
about the Spring AOP in Chapter 11.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[60]

Applying IoC
You can use IoC to eliminate the first problem: the SetterInfoPrinter instantiation
when the Student instance is created. According to IoC, object instantiation can
be accomplished by an outside object, instead of by the owner object. In our case,
this means we can leave the SetterInfoPrinter instantiation to the Spring IoC
container as an outside object, and always look up the Spring IoC container to
obtain the Student instances.

In our example, applying IoC requires the following three steps:

1. Remove the SetterInfoPrinter instantiation from the Student constructor,
and implement the setter method for the instance to be provided by the
outside object.

2. Configure the Student object to be created and managed by the Spring
container, so that Spring knows how to create Student instances and do the
SetterInfoPrinter instantiation.

3. Obtain the configured Student instances from the Spring container instead
of initializing them directly.

Let's see how to implement each step.

Remove object instantiation and implement the
setter method
In the first step, you need to refactor the Student class so that the
SetterInfoPrinter is not instantiated in the constructor and, instead, the setter
method is implemented for the SetterInfoPrinter instance. Spring uses the setter
method to provide an instantiated SetterInfoPrinter for the Student instance.
The following code snippet shows the refactored Student class:

package com.packtpub.springhibernate.ch03;

import java.io.Serializable;

public class Student {

 private int id;
 private String firstName;
 private String lastName;
 private SetterInfoPrinter printer;

 //zero-arguement constructor
 public Student() {
 //no SetterInfoPrinter instantiation
 }

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[61]

 public Student(String firstName, String lastName) {
 this();
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public void setId(int id) {
 printer.print("setId", this.id, id);
 this.id = id;
 }

 public void setFirstName(String firstName) {
 printer.print("setFirstName", this.firstName, firstName);
 this.firstName = firstName;
 }

 public void setLastName(String lastName) {
 printer.print("setLastName", this.lastName, lastName);
 this.lastName = lastName;
 }

 public SetterInfoPrinter getPrinter() {
 return printer;
 }

 public void setPrinter(SetterInfoPrinter printer) {
 this.printer = printer;
 }

 //getter methods
 //hashCode() and equals() methods
}

Configure the Student object
Next, configure the Student object so that Spring knows how to create and configure
Student instances.

Spring uses an XML file called Spring context. This file includes information about
all of the objects that are created and managed by Spring. Each object in this file is
called a bean and is defined through the <bean> element. A simple Spring context,
called spring-context.xml, which declares information only about the Student
object, is shown as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

eeasanga_adm
Highlight

eeasanga_adm
Callout
read here

A Quick Tour of Hibernate and Spring

[62]

 <bean id="student"
 class="com.packtpub.springhibernate.ch03.Student">
 <property name="printer">
 <bean
 class="com.packtpub.springhibernate.ch03.SetterInfoConsolePrinter"/>
 </property>
 </bean>
</beans>

Like any other XML file, this file starts with the XML declaration, specifying the
XML version and the document encoding being used. The <beans> element is the
root element in this file, which introduces the namespaces and the schema document
according to how the document should be validated. The <beans> element includes
the entire object configuration defined through individual <bean> elements. Each
<bean> element declares an object that is created and managed by Spring. The
<bean> element can come with two attributes: id and name. id assigns an identifier
to the object, by which the object is identified in the Spring context and which the
application uses to look up the object. The name attribute determines the concrete
class from which the object must be instantiated. The <bean> element can nest with
an arbitrary number of <property> elements; each one determines a property of the
object that is created, managed, and set by Spring. The <property> element may
either refer to another managed object inside the Spring context through the nested
<ref> element, or may use a nested <bean> element to define the class from which
the property is instantiated.

In our example, we have used the nested <bean> element, so we cannot reuse the
SetterInfoConsolePrinter definition. However, it is possible to use the <ref>
element if we want the object to be reused by other instances, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">
 <bean id="student"
 class="com.packtpub.springhibernate.ch03.Student">
 <property name="printer">
 <ref local="printer"/>
 </property>
 </bean>

 <bean id="printer"
 class="com.packtpub.springhibernate.ch03.SetterInfoConsolePrinter">
 </bean>
</beans>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 3

[63]

Obtain the Student instance from Spring
Finally, replace direct instantiation of the Student object with looking up and
obtaining the object from Spring. The following shows the Main class, which now
uses Spring to obtain the Student instance:

package com.packtpub.springhibernate.ch03;

import org.springframework.context.support.
ClassPathXmlApplicationContext;
import org.springframework.context.ApplicationContext;

public class Main {
 public static void main(String[] args) {

 ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "com/packtpub/springhibernate/ch03/
 spring-context.xml");
 Student student = (Student)ctx.getBean ("student");
 student.setId(41);
 student.setFirstName("John");
 student.setLastName("White");
 }
}

As you can see, we have used the ApplicationContext interface and an
implementation of this interface, that is, ClassPathXmlApplicationContext, to
interact with Spring. ClassPathXmlApplicationContext fires up the Spring IoC
container with an XML context file in the application classpath. The constructor of
ClassPathXmlApplicationContext takes the relative path of the Spring context
file as a String argument. When the ClassPathXmlApplicationContext object
is created, the getBean() method of the ApplicationContext instance, with the
name of the object configured in the Spring context, is called to obtain the configured
object. By executing the Main class, you can see the same result as when you do not
use IoC.

As mentioned before, IoC allows you to manage the object dependencies
at the development or maintenance time, and inject the dependencies
at runtime. This functionality made IoC to be renamed with another
descriptive name Dependency Injection (DI).

IoC is discussed more in depth in Chapter 10.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

A Quick Tour of Hibernate and Spring

[64]

Hibernate with Spring
As mentioned so far, Hibernate and Spring essentially are used for different
purposes. Although there are many Spring features, including IoC, which make the
Hibernate application more maintainable, the main feature of Spring in Hibernate
applications is Aspect-Oriented Programming(AOP). AOP is an added feature to
the traditional Object-Oriented programming. As you will see, this feature allows us
to define common properties for a set of methods. In the case of Hibernate, suppose
that there are a range of persistence methods that all need transaction management.
AOP lets us to start transactions at the beginning of those methods and commit at
the end, or roll back if any exception occurs during the method executions. The main
benefit of this style of programming is using a declarative approach that, like IoC,
makes the application clean, simple, and more maintainable.

We will discuss Spring's AOP in-depth in an individual chapter in this book.

Summary
In this chapter, you learned the fundamental concepts behind using Hibernate and
Spring. We started with a simple Student class. Next, we used an XML mapping
document to define mapping of the class properties to the table columns. Then, we
called Hibernate to persist a Student object.

You must configure Hibernate before you can use it. You can configure Hibernate
either programmatically or declaratively. However, for flexibility and maintenance,
the declarative approach is highly recommended.

Our discussion continued with other issues in object persistence, including object
querying, caching, and transaction management.

Finally, we looked at the Spring IoC container. Spring provides IoC functionality in
its core API, meaning that all other Spring services sit around IoC. IoC allows us to
create and manage objects using the IoC container, instead of using the owner
objects themselves.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Configuration
In Chapter 3, we took a quick tour of the fundamental concepts behind Hibernate
and Spring. In fact, the steps in using Hibernate do not require much beyond what
you have already learned. However, since Hibernate provides a persistence service
for many different environments, it has been designed to be flexible enough for
use in different environments, under different circumstances, supplying any
persistence requirements.

Hibernate allows many configuration options, based on an application's persistence
requirements. However, most of these parameters have default values, which relieve
us of detailed configuration in most situations.

In this chapter, I will show how Hibernate is configured and examine Hibernate's
configuration settings. To begin, let's look at the basic configuration information
that's commonly required. You can find more information about Hibernate
configuration in the Appendix.

Basic configuration information
Through its configuration, Hibernate allows us to choose either Hibernate-managed
JDBC connections or a container-managed data source. If you decide to use
Hibernate-managed connections, you need to tell Hibernate about the database
properties, such as the name of the driver class, the database JDBC URL, and the
database username and password. These are the basic configuration settings for
Hibernate-managed connections. Each of these settings is represented by a name,
as explained in the following table:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Configuration

[66]

Property name Property value
hibernate.connection.driver_class The fully qualified classname of the

database's JDBC driver
hibernate.connection.url The database's JDBC URL
hibernate.connection.username The database username
hibernate.connection.password The database password
hibernate.dialect The Hibernate dialect class

corresponding to the used database
(see the next section)

To use a container-managed data source, you need to give Hibernate the JNDI
information of the configured datasource object. The following table shows the
configuration properties for container-managed connections:

Property name Property value
hibernate.connection.datasource Datasource JNDI name
hibernate.jndi.class The fully qualified name of the initial

context factory class for JNDI
hibernate.jndi.url URL of the JNDI provider
hibernate.connection.username Database username
hibernate.connection.password Database password
hibernate.jndi.<JNDIpropertyname> Used for specifying other JNDI properties
hibernate.dialect The Hibernate dialect class

corresponding to the database used
(see the next section)

Between all of these properties, usually hibernate.
connection.datasource and hibernate.dialect are used.

Hibernate uses many more properties than listed in these tables, but we'll put that
discussion aside and look at dialect, because dialect is a very important aspect of
Hibernate. Other properties are presented in the following chapters as we discuss
relevant topics.

You already know a little about Hibernate dialect. Here, let's dig deeper into
Hibernate dialect and see what exactly a dialect does.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 4

[67]

Hibernate dialect
Although JDBC and SQL allow all Java applications to connect to all databases, we
can't use special database features relying only on standard JDBC and SQL. In other
words, although most interactions with all databases are treated similarly through
the standard ANSI SQL, many database properties are essentially used differently,
and we need to use a slightly different version of SQL to interact with them.

For example, databases may differ in the following ways:

Different databases may define identity columns differently
Different databases may support different column types
Different databases may use SQL syntaxes
Different databases may define foreign key columns differently
Not all databases support cascading delete

To solve this problem, Hibernate dialect allows us to use database features which
are provided differently by different databases, without having to worry about
the underlying details. We use a common syntax, and Hibernate translates our
commands into the language of the database we are using, by applying the
appropriate dialect. This guarantees application portability.

From an implementation perspective, each dialect is a subclass of org.hibernate.
dialect.Dialect, defining the use of a database's special features in a standard
way. Each database has its own, individual dialect class. To use a database with
Hibernate, the dialect class for the database must be specified through the mandatory
hibernate.dialect entry in the configuration file. You can learn more about
Hibernate at http://docs.jboss.org/hibernate/stable/core/reference/en/
html/session-configuration.html#configuration-optional-dialects.
The following table shows the supported databases and their respective dialect
classes. You can find the updated list of supported database names on the
Hibernate website.

When you use Hibernate, don't consider the special features of the
underlying database. In other words, all applications should view the
database only as much as Hibernate exposes it and not rely on special
features of the database that are not exposed by Hibernate. Otherwise, the
application will depend on the database and will not be portable, which
may reduce scalability and cause maintenance problems.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Configuration

[68]

Dialect (All in org.hibernate.dialect package) Database name
DB2390Dialect DB2/390
DB2400Dialect DB2/400
DB2Dialect DB2
DerbyDialect Derby
FirebirdDialect Firebird
FrontBaseDialect FrontBase
HSQLDialect HSQLDB
InformixDialect Informix
IngresDialect Ingres
InterbaseDialect Interbase
MckoiDialect Mckoi
MySQLDialect MySQL
MySQLInnoDBDialect MySQL with InnoDB tables
MySQLMyISAMDialect MySQL with MyISAM tables
Oracle9Dialect Oracle 9
OracleDialect Oracle
PointbaseDialect PointBase
PostgreSQLDialect PostgreSQL
ProgressDialect Progress
SAPDBDialect SAP DB
SQLServerDialect SQL Server
Sybase11Dialect Sybase 11
SybaseAnywhereDialect Sybase Anywhere
SybaseDialect Sybase

If you want to use a database that does not have any built-in dialect in Hibernate,
you must implement an appropriate dialect class, according to the database.

Let's now see how to use Hibernate's basic properties.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 4

[69]

Configuring Hibernate
As you saw in Chapter 3, you must configure Hibernate before you can use it. The
configuration is represented by an object of type org.hibernate.Configuration.
This object wraps all of the configuration settings and is used in the next step for
building a SessionFactory object. (We'll discuss a useful strategy for creating the
SessionFactory at the end of this chapter.) To configure Hibernate, you first need
to instantiate a configuration object:

Configuration cfg = new Configuration();

The actual configuration settings can be divided into two parts:

Hibernate properties: These include all of the database-related properties
that Hibernate should consider while connecting to the database, as we
saw earlier.
Hibernate mappings: These are XML documents that define the mapping of
the entity classes to the database tables. You'll see a lot more on Hibernate
mappings in Chapter 5 and Chapter 6.

Once you have instantiated a Configuration object, there are two ways to
configure Hibernate, either programmatically and declaratively. Let's first
look at programmatic configuration.

Programmatic configuration
Hibernate properties are set in the configuration object through its
setProperty() method:

public Configuration setProperty(String propertyName, String
propertyValue)

The first argument determines the name of a Hibernate property that we want to
configure. The second indicates the actual value for that property. The following
snippet shows an example:

cfg.setProperty("hibernate.connection.url",
 "jdbc:hsqldb:hsql://localhost/hiberdb");

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Configuration

[70]

Note that the setProperty() method returns a Configuration object. This allows
method chaining to set other properties. For instance, you can set all required
properties in one single line of code, as follows:

Configuration cfg = new Configuration()
 .setProperty("hibernate.connection.url",
 "jdbc:hsqldb:hsql://localhost/hiberdb")
 .setProperty("hibernate.dialect", "org.hibernate.dialect.
 HSQLDialect")
 .setProperty("hibernate.connection.username", "sa")
 .setProperty("hibernate.connection.password", "")
 .setProperty("hibernate.connection.driver_class",
 "org.hsqldb.jdbcDriver");

Another way to set up the configuration object is by passing an instance of
java.util.Properties to the setProperties() method:

public Configuration setProperties(Properties properties)

To set an XML mapping file, use the addResource() method of the
configuration object:

public Configuration addResource(String resourcePath) throws
MappingException

The parameter of this method refers to the relative path of the mapping file in
the classpath.

The following snippet shows an example:

config.addResource("com/packtpub/springhibernate/ch04/Student.hbm.
xml");

In this example, the mapping file is in the com.packtpub.springhibernate.
ch04 package in the classpath, next to its respective entity class, com.packtpub.
springhibernate.ch04.Student. Although it's a good idea to place each mapping
file next to its respective entity class, you don't need to do that.

An alternative way to configure mapping files, when they are in the same package as
their respective entity classes, is using the addClass() method:

public Configuration addClass(Class aClass) throws MappingException

This method takes the entity class as an argument to find its mapping file, as in
this example:

config.addClass(com.packtpub.springhibernate.ch04.Student.class);

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 4

[71]

Hibernate then looks for a mapping file named com/packtpub/springhibernate/
ch04/Student.hbm.xml in the classpath.

This following snippet shows the programmatic configuration of Hibernate:

Configuration config = new Configuration();
config.setProperty("hibernate.dialect",
 "org.hibernate.dialect.HSQLDialect");
config.setProperty("hibernate.connection.driver_class",
 "org.hsqldb.jdbcDriver");
config.setProperty("hibernate.connection.url",
 "jdbc:hsqldb:hsql://localhost/hiberdb");
config.setProperty("hibernate.connection.username", "sa");
config.setProperty("hibernate.connection.password", "");
config.addClass(Student.class);
config.addClass(Teacher.class);
config.addClass(Course.class);

Note that all of these configuration settings are set only once, when the first
interaction with Hibernate is performed.

Because the actual configuration information is specified in the deployment phase,
or may change in during the lifetime of the application, Hibernate, like other
frameworks, should be configured declaratively, instead of programmatically
as we have done in this section.

Declarative configuration
The declarative approach is an alternative way to configure Hibernate. In this
approach, an XML or a properties file sets up Hibernate properties. This file is then
loaded in a Configuration object at runtime.

Hibernate supports both XML and properties files as the Hibernate configuration file,
and there is actually no difference between them in terms of performance. However,
the XML variant is preferred as this approach is much more flexible when specifying
hbm mapping files. Let's see how each approach is used in practice.

Using a properties file
As you know, properties files are text files with the properties suffix. Their contents
are keys and values:

key=value

Every key is a unique word or phrase that corresponds to another word or
phrase as the value. Therefore, every key leads you or the application to the
corresponding value.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Configuration

[72]

The following code shows a properties file's contents, specifying the basic
configuration information of Hibernate:

#hibernate configuration
hibernate.connection.driver_class=org.hsqldb.jdbcDriver
hibernate.connection.url=jdbc:hsqldb:hsql://localhost/hiberdb
hibernate.connection.username=sa
hibernate.connection.password=
hibernate.pool_size=5
hibernate.show_sql=false
hibernate.dialect= org.hibernate.dialect.HSQLDialect

To configure Hibernate with a properties file, you need to only create a
Configuration object as follows:

Configuration config = new Configuration();

In this approach, Hibernate searches for a file named hibernate.properties in
the root of the classpath. If this file exists, all hibernate.* properties are loaded
and added to the Configuration object. When using this approach, you need to
introduce mapping files to Hibernate programmatically, like this:

config.addClass(Student.class);
config.addClass(Teacher.class);
config.addClass(Teacher.class);

Note that Hibernate allows neither a different name for this file nor any location
other than the root of the classpath. If you want to use a different file, or the file in a
different location than the root of the classpath, you must use the XML approach.

Using an XML file
As mentioned earlier, another variant of declaratively configuring Hibernate is
the XML approach. Because an XML file allows greater flexibility in specifying
hbm mapping files, it's preferred to using a properties file and programmatic
configuration. The following code shows a simple XML configuration file with
the basic configuration entries:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration SYSTEM
 "http://hibernate.sourceforge.net/hibernate-configuration
 -3.0.dtd">
<hibernate-configuration>
 <session-factory>

 <!-- Hibernate Properties -->
 <property name="connection.driver_class">

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 4

[73]

 org.hsqldb.jdbcDriver

 </property>
 <property name="connection.url">
 jdbc:hsqldb:hsql://localhost/hiberdb

 </property>
 <property name="connection.username">sa</property>
 <property name="connection.password"> </property>
 <property name="pool_size">5</property>
 <property name="show_sql">false</property>
 <property name="dialect">
 org.hibernate.dialect.HSQLDialect
 </property>

 <!-- Mapping files -->
 <mapping resource="com/packtpub/springhibernate/ch04/
 Student.hbm.xml"/>
 <mapping resource="com/packtpub/springhibernate/ch04/
 Teacher.hbm.xml"/>
 <mapping resource="com/packtpub/springhibernate/ch04/
 Course.hbm.xml"/>

 </session-factory>
</hibernate-configuration>

As this shows, the configuration entry names in the XML file are similar to the
corresponding names in the properties file, only without the hibernate prefix.
For example, the hibernate.connection.username entry in the properties file
corresponds to the connection.username entry in the XML file.

To configure Hibernate with an XML file, create a Configuration object and then
call its configure() method:

Configuration cfg = new Configuration();
cfg.configure();

When the configure() method is called, Hibernate searches the root of the classpath
for a file named hibernate.cfg.xml. If this file exists, Hibernate loads all of the
settings and then adds them to the Configuration object. If the file doesn't exist,
Hibernate throws a HibernateException.

If both hibernate.properties and hibernate.cfg.xml exist in an application,
Hibernate first loads hibernate.properties, then overrides the loaded settings
with the values defined in hibernate.cfg.xml.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Configuration

[74]

If you want to use a file with a different name, or a file in a different location
than the root of the classpath, you need to call the configure() method of the
Configuration object and pass the file path as the argument. Here is an example:

Configuration cfg = new Configuration();
cfg.configure("/conf/hibernate.cfg.xml");

Using a single instance of
SessionFactory
As mentioned in Chapter 3, the application uses session objects to interact with
Hibernate and to request Hibernate to perform a persistence operation. This
means the application needs to obtain a session object before issuing a persistence
request. These objects are not thread-safe, so they cannot be shared. They undertake
transactions, manage caching, and provide other controls on the persisting of the
entity objects. However, session objects are not directly instantiated. Instead, they are
constructed by another object called SessionFactory, which is thread-safe and acts
as a factory for sessions.

As you saw in Chapter 3, the SessionFactory object is also not directly instantiated
directly. Instead, it is constructed through the Configuration object by invoking
the buildSessionFactory() method:

Configuration cfg = new Configuration();
…
SessionFactory sessions = cfg.buildSessionFactory();

There are many reasons to use only one instance of SessionFactory for an entire
application. For example, SessionFactory is an expensive object. Instantiating it is a
time-consuming operation and uses system resources. A SessionFactory is roughly
analogous to a JDBC connection pool, which holds JDBC connections. However,
it does more. It instantiates and prepares Session objects and binds them to the
JDBC connections. It should be noted that only a single instance of SessionFactory
is used throughout the application for each database that the application uses.
However, situations when the application uses more than one database schema,
you must have one SessionFactory for each database.

The following code shows the HibernateHelper class designed for creating a
single instance of SessionFactory throughout the application. As you can see,
the constructor of the class is private, meaning no objects of the class can be
instantiated by other objects.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 4

[75]

As you will see in the coming chapters, you will not worry about this
class anymore if you are using Hibernate with Spring. You can omit this
class from the application and let Spring configure Hibernate and provide
a single instance of SessionFactory, and you can even let Spring
provide Session instances behind the scene.

The sessionFactory object is a private, static member of the class. This member
represents the single instance of SessionFactory used for the entire application. The
class also includes the getSession() method, which provides the session objects for
the rest of the application. Actually, none of the classes that interact with Hibernate
needs to configure Hibernate or obtain the SessionFactory object itself. A class
should only invoke the getSession() method of this class to get a session object
and then perform its desired persisting operation:

package com.packtpub.springhibernate.ch04;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class HibernateHelper {

 private static final ThreadLocal session = new ThreadLocal();
 private static final ThreadLocal transaction = new ThreadLocal();
 private static final SessionFactory sessionFactory =
 new Configuration().configure().
buildSessionFactory();

 //inaccessible constructor
 private HibernateHelper() {
 }

 public static Session getSession() {
 Session session = (Session) HibernateHelper.session.get();
 if (session == null) {
 session = sessionFactory.openSession();
 HibernateHelper.session.set(session);
 }
 return session;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Configuration

[76]

JPA configuration
The JPA compatible EntityManager is configured through the persistence.xml file
located in the META-INF directory of the classpath. The persistence.xml file starts
with the XML declaration and the persistence element as root. The root defines the
schema, determining the version of JPA according to which the document is created.
Inside the root element, an unlimited number of persistence-unit elements can
be present. In most situations, only a single persistence-unit element is used.
However, in rare situations when you are using two or more persistence strategies
together in your application (for example, Hibernate for persisting some classes
and iBatis for others), you can distinct them with individual persistence-unit
elements. Here is an example of persistence-unit element with possible attributes
and subelements:

<persistence-unit name="AUniqueName" transaction-type="JTA|RESOURCE_
LOCAL">

 <provider>FullyQualifiedClassName</provider>
 <jta-data-source>JNDIName</jta-data-source>
 <jar-file>JARFileName</jar-file>
 <class>EntityClassName</class>
 <properties>

 <property name="propertyName" value="propertyValue"/>
 </properties>
</persistence-unit>

The meaning of these attributes and subelements are as follows:

name is the identifier of the persistence unit. The EntityManger object for this
unit is configured by the persistence unit identified by this name.
transaction-type specifies the transaction type of this persistence unit. The
valid values are JTA and RESOURCE_LOCAL. When a jta-datasource is used,
the default is JTA, and if non-jta-datasource is used, RESOURCE_LOCAL
is used. The default value in a JavaEE environment is JTA and in a JavaSE
environment is RESOURCE_LOCAL.
provider specifies the fully qualified class name of the JPA provider. In case
of Hibernate, it's value is org.hibernate.ejb.HibernatePersistence.
jta-data-source or non-jta-data-source specifies the JNDI name of
the datasource being used. You may use none of these and use <property>
elements, as described below, letting Hibernate create and manage
connections by itself.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 4

[77]

jar-file refers to a JAR file which includes annotated classes, annotated
packages, and all hbm.xml files to be added to the persistence unit
configuration. This element is mainly used in Java EE environment.
exclude-unlisted-classes determines if the annotated classes should
explicitly be listed with the <class> elements or all should be loaded from
the JAR file. The default value for this element is true in Java SE, and false
in Java EE.
class specifies a fully qualified class name of a persistent class. By default,
if exclude-unlisted-classes is set to true, all properly annotated classes
and all hbm.xml files found inside the archive are added to the persistence
unit configuration. This element also allows you to add some external entities
to the persistence unit.
properties lets you to specify vendor-specific properties. This is where
you will define your Hibernate-specific configurations, JDBC connection
information, and so on.

To start up Hibernate with JPA, you should set up the EntityManager
with the just configured persistence unit. This is done through the static
createEntityManagerFactory() method of the Persistence class, as follows:

EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("instituteWebApp");

instituteWebApp is the value of the name attribute of the used persistence-unit.

If you are deploying in Java SE environment, you will need a utility
class, like HibernateHelper, to provide only a single instance of the
EntityManagerFactory object throughout the application.

It is also possible to configure EntityManagerFactory programmatically. Here is
an example:

Map properties= new HashMap();
properties.put("hibernate.show_sql", "true");
EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("instituteWebApp",
properties);

It then overrides any property already set in the persistence.xml file.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Configuration

[78]

Alternatively, you can use a Hibernate-native API to create and configure the
EntityManagerFactory instance. Hibernate provides the org.hibernate.ejb.
Ejb3Configuration class for this purpose. It can be used as follows:

Ejb3Configuration cfg = new Ejb3Configuration();
EntityManagerFactory emf =
cfg.configure("/hibernate.cfg.xml")
 .setProperty("hibernate.show_sql", "true")
 .addAnnotatedClass(hello.Message.class)
 .addResource("/Student.hbm.xml")
 .buildEntityManagerFactory();

After the EntityManagerFactory is created, it can be used as follows to obtain
EntityManager objects to perform unit of works:

EntityManager em = emf.createEntityManager();

The EntityManagerFactory object should be closed by invocation of it's close()
method when the application has finished using this object, or the application
shutdowns. Once the EntityManagerFactory has been closed, all of its
EntityManagers are considered to be in the closed state. You will learn
more about the EntityManager class in Chapter 8.

Summary
In this chapter, we discussed Hibernate configuration settings and how
Hibernate is configured. Hibernate lets us use a container-managed data source or
Hibernate-managed connections. In either case, you need to specify the database
username, password, and dialect. Additionally, when you use a container-managed
data source, you must also specify the JNDI name of the data source. When you
use a Hibernate-managed data source, you need to indicate the database URL
and the classname of the database driver. Although this is the basic configuration
information for Hibernate, Hibernate allows more configuration settings, making it
an appropriate solution for any application deployed in any environment with any
persistence requirement.

You have two options when configuring Hibernate, that is, the programmatic
approach and the declarative approach. Although there is no difference between
these two approaches as far as Hibernate is concerned, I prefer the declarative
variant, because of its greater flexibility and lower maintenance cost.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 4

[79]

Hibernate also allows you to use an XML or a properties file as its configuration
file. If you choose the XML variant, you can also specify the mapping files through
it, in addition to other properties. Hibernate uses hibernate.properties and
hibernate.cfg.xml as the default names for the configuration files. If both files
exist in the application classpath, the hibernate.properties file is read first, then
all of the read settings are overridden by the values defined in hibernate.cfg.xml.

In Hibernate, every persisting operation is performed through session
objects. These are not instantiated directly. Instead, they are obtained by a
SessionFactory object. This object is built by a Configuration object which
wraps all configuration information.

You only need one instance of SessionFactory for each database in the application.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings
In earlier chapters, you have learned how to set up a project from scratch to use with
Hibernate. You also learned how Hibernate is configured after it has been installed.
After that, the application is ready to use Hibernate for persisting your objects.

Obviously, we are not going to persist all application objects in the database.
Only the business entities of the problem domain (such as students and courses
in an educational system application) are persistent. The classes that implement
these entities are called entity classes. The persistence with Hibernate is called
transparent, because the persistent classes never use or call Hibernate APIs and are
not influenced by the persistent logic. These classes are merely simple data holders.
We will discuss the implementation details and the persistence capability of these
classes in this chapter.

For the next phase in Hibernate development, you'll need to tell Hibernate how it
should map each entity class to its respective database table. This process is called
object mapping and may involve setting up XML mapping files and/or annotating
Java classes with Hibernate annotations, to determine the mapping information. To
complete the process of object mapping, you introduce implemented mapping files
and annotated Java classes to Hibernate through the Hibernate configuration file.
Mapping implementations are the subject of this chapter.

Effective database schema design, proper object design, and proper object mapping
are usually the most critical parts of application development. Any inappropriate
design of the database's tables, inappropriate object design, or inappropriate object
mapping hurts the application's performance and may limit its scalability.

This chapter discusses basic issues related to persistent objects and their mappings.
Our discussion begins with simple cases, moving on to advanced and practical ones.
The discussion continues into Chapter 6, which presents some advanced concepts
behind Hibernate mappings.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[82]

Persistent entity classes
Entity classes are absolutely unaware of any Hibernate APIs, the underlying
database and communication language (SQL), and any persistence issues, such as
transaction. It is the role of Hibernate to work with these simple classes, handle
persistence issues related to them, and provide a transparent persistence as
the result.

The structure of persistent classes in Hibernate follows the Plain Old Java Object
(POJO) programming model. POJOs are a customized and simplified form of
JavaBeans, a component model for user interface development in Java. However,
unlike JavaBeans, POJOs can be used in any layer of application architecture. They
are the essence of many new Java frameworks that simply aim for JEE development.
In this book, I use POJO to refer to any object that follows the POJO rules, regardless
of whether it is persistent. I use the term persistent class to refer to any class that is
persistent with Hibernate.

Let's see what entity classes look like in practice, before we dig more deeply into the
POJO model and its Hibernate requirements to make these entity classes persistent.

POJOs are simply defined as data holders. They have properties, which hold data
accessed through setter/getter accessor methods. A simple Hibernate persistent
class, Student, which was introduced in earlier chapters, is shown below:

package com.packtpub.springhibernate.ch05;

import java.util.Date;
import java.util.Calendar;
import java.io.Serializable;

public class Student implements Serializable{
 private int id;
 private String firstName;
 private String lastName;
 private String ssn;
 private Date birthday;
 private String stdNo;
 private Date entranceDate ;

 //zero-argument constructor
 public Student() {
 }

 public Student(int id,
 String firstName,
 String lastName,
 String ssn,
 Date birthday,

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[83]

 String stdNo,
 Date entranceDate) {
 setId(id);
 setFirstName(firstName);
 setLastName(lastName);
 setSsn(ssn);
 setBirthday(birthday);
 setStdNo(stdNo);
 setEntranceDate(entranceDate);
 }

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 public Date getBirthday() {
 return birthday;
 }

 public void setBirthday(Date birthday) {
 this.birthday = birthday;
 }

 public String getStdNo() {

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[84]

 return stdNo;
 }

 public void setStdNo(String stdNo) {
 this.stdNo = stdNo;
 }

 public Date getEntranceDate() {
 return entranceDate;
 }

 public void setEntranceDate(Date entranceDate) {
 this.entranceDate = entranceDate;
 }

 public int getAge(){
 Calendar c = Calendar.getInstance();
 c.setTime(new java.util.Date(getBirthday().getTime()));
 int birthYear = c.get(Calendar.YEAR);
 c.setTime(new java.util.Date());
 int now = c.get(Calendar.YEAR);
 return now-birthYear;
 }

 public String toString(){
 return id+":"+firstName+":"+lastName+":"+ssn+":["+birthday+"]:";
 }

 public boolean equals(Object o) {
 if (this == o) return true;
 if (!(o instanceof Student)) return false;

 final Student student = (Student) o;

 if (id == 0) return false;
 if (birthday != null ? !birthday.equals(student.birthday) :
 student.birthday != null) return false;
 if (entranceDate != null ? !entranceDate.equals(student.
 entranceDate) :student.entranceDate != null) return false;
 if (firstName != null ? !firstName.equals(student.firstName) :
 student.firstName != null) return false;
 if (lastName != null ? !lastName.equals(student.lastName) :
 student.lastName != null) return false;
 if (ssn != null ? !ssn.equals(student.ssn) :
 student.ssn != null) return false;
 if (stdNo != null ? !stdNo.equals(student.stdNo) :
 student.stdNo != null) return false;

 return true;
 }
 public int hashCode() {

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[85]

 int result;
 result = 29 * result + (firstName != null ?
 firstName.hashCode() : 0);
 result = 29 * result + (lastName != null ?
 lastName.hashCode() : 0);
 result = 29 * result + (ssn != null ? ssn.hashCode() : 0);
 result = 29 * result + (birthday != null ?
 birthday.hashCode() : 0);
 result = 29 * result + (stdNo != null ? stdNo.hashCode() : 0);
 result = 29 * result + (entranceDate != null ?
 entranceDate.hashCode() : 0);
 return result;
 }

}

Hibernate does not require persistent classes to extend or implement any
Hibernate-specific classes, or call any other particular API. Every persistent
class can be part of any class hierarchy, or may call or use any arbitrary API.

If the persistent objects are distributed over the network,
or are stored in an HttpSession, they must implement
the java.io.Serializable interface.

Although most POJOs are compatible with Hibernate, they should meet a few
mandatory and optional requirements to be persistent with Hibernate. Upcoming
subsections discuss these requirements.

Having a zero-argument constructor
(mandatory)
As Hibernate uses the Reflection API through the newInstance() method with
no-arguments to instantiate persistent objects, every persistent class must have a
zero-argument (empty) constructor. You can either define this constructor yourself,
or not write any constructors at all, which produces a default empty constructor.

The zero-argument constructor can be nonpublic. However, it is highly recommended
that it is at least package-visible. This allows Hibernate to generate runtime proxies
to optimize performance. Generating runtime proxies is a mechanism Hibernate uses
to avoid unnecessary loading of persistent objects, thereby enhancing performance.
This is the basis of Hibernate's lazy loading feature. Obviously, the subclass cannot
be created if the persistent class has a private constructor or is defined as final. We'll
discuss runtime proxies in more depth in Chapter 8.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[86]

Providing accessors to access class
properties (optional)
Each persistent class may have properties that represent the data which the class
holds, defined as simple values, or other persistent classes, or both. These properties
are usually defined as nonpublic instance variables, and are accessed through public
accessor methods called setters and getters with the name of getXxx and setXxx.
For example, for the Student class with the firstName property of type String,
the getter and setter methods are respectively named getFirstName() (which takes
no arguments and returns a String) and setFirstName() (which takes a String
and has a void return type). Notice the lower-case f in the property name, and the
upper-case F in the method names).

If a class has a getXxx method, but no corresponding setXxx, then
the class is said to have a read-only property named xxx. The read-
only property is useful when there is a property in the class but no
corresponding value for that property in the database. In that case, the
class may have its own logic to determine the property value, in practice,
from other properties, or Hibernate may load the property value from a
column which is valued by a database trigger instead of the application.
In the Student class above, age is a read-only property calculated from
the persisted birthdate. You can get more information about JavaBeans at
http://java.sun.com/docs/books/tutorial/javabeans/.

The exception to this naming convention is Boolean properties, which uses a method
called isXxx to look up their values. For example, the Student class might have
methods called isGraduated() (which takes no arguments and returns a Boolean)
and setGraduated() (which takes a Boolean and has a void return type), and would
be said to have a Boolean property named graduated. (Again, notice the lower-case
first letter in the property name.)

For a configuration setting, you can specify the strategy that Hibernate uses to access
class properties, either through accessor methods or by direct access. However,
using accessor methods is recommended, because this allows you to do more
than accessing properties (such as imposing constraints on property values or
validating them).

These requirements for accessor methods are rare. They mostly get and set
values to the properties.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[87]

Defining nonfinal classes (optional)
As explained before, Hibernate generates runtime proxies to enhance performance.
To enable Hibernate to generate runtime proxies, the persistent classes either must be
declared as nonfinal, letting Hibernate extend them at runtime, or must implement
a Hibernate interface. Implementing the Hibernate interface is not recommended,
because this method couples the persistent class to Hibernate. Instead, define the
persistent classes as nonfinal. Chapter 8 discusses proxy generation in more detail.

Implementing equals() and hashCode()
(optional)
Hibernate uses snapshot comparison to automatically detect changes, checking
to see if the objects in memory are dirty and need updating. Hibernate does this
comparison through the equals() and hashCode() methods implemented in
the persistent classes. The hashCode() and equals() methods are required if the
application uses detached objects (the objects which have already persisted and are
being changed). When you implement the equals() method, you need to implement
the hashCode() method as well. When two objects are equal, they must have the
same hash code value.

Object/relational mapping metadata
You now have persistent classes that meet Hibernate requirements for persistence.
To do its job, Hibernate (or any other object/relational mapping tool) needs
information about the persistent classes and the target database tables in which
the objects are persisted. It needs detailed information about the mapping of object
properties to and from table columns, and of Java types to and from SQL types.
It may require additional information about establishing foreign keys when the
persistent class is associated with other(s). This is typical information that object/
relational mapping tools need. Moreover, Hibernate provides features, such as lazy
loading, cascading, caching, and others, that must be configured. This information is
represented as object/relational mapping metadata.

Hibernate supports the following three different strategies to describe this metadata:

Setting up XML mapping files
Annotating persistent classes with Hibernate XDoclet tags
Annotating persistent classes with Hibernate annotations

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[88]

The first approach, which is also the traditional approach, maps metadata in
Hibernate through XML documents. XML documents are easy to edit and maintain,
even for administrators who do not know much about Java. Developing XML-based
metadata is not effortless, especially when the XML schema is complex and no
element or attribute has a default value.

Hibernate has tried to make using XML as simple and convenient as possible.
XML-based metadata in Hibernate is well structured, with simple, understandable
elements and attributes. Many elements and attributes have default values.
Therefore, they can be dropped if they are worthless. For some elements (and
even attributes), Hibernate can find the best value by investigating the persistent
classes, if those elements or attributes are omitted.

In addition to XML, Hibernate supports two other methods for determining
mapping metadata:

Annotating persistent classes with XDoclet markup
Annotating persistent classes with Hibernate annotations

Hibernate started supporting annotations with XDoclet when there was no support
for annotations in Java. In this approach, persistent classes are annotated with
special Hibernate-specific Java doclet tags, and then fed into XDoclet to generate
XML mapping metadata. With JDK 5.0 annotations, Hibernate has provided its own,
proprietary annotation API for supporting source-level metadata. This book covers
both the XML and JPA annotation API approaches to describe metadata.

Next, we'll discuss how XML documents can determine mapping metadata.

Metadata in XML
Let's look at a simple example of object mapping to explore the XML approach. The
following code shows the Student.hbm.xml file, which represents the mapping
metadata for the Student class already discussed:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch05.Student"
table="STUDENT">

 <id name="id" column="id" type="int">
 <generator class="increment"/>
 </id>
 <property name="firstName" column="FIRST_NAME" type="string"/>
 <property name="lastName" column="LAST_NAME" type="string"/>

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[89]

 <property name="ssn" column="SSN" type="string"/>
 <property name="birthday" column="BIRTHDAy" type="date"/>
 <property name="stdNo" column="STD_NO" type="string"/>
 <property name="entranceDate" column="ENTRANCE_DATE" type="date"/>
 </class>
</hibernate-mapping>

As you can see in this code, the XML-based metadata, like any other XML document,
starts with XML and Doctype definitions.

All mapping information is declared inside the <hibernate-mapping> element,
coming as the root. Within the root, the <class> element specifies the mapping
information of the persistent class and its respective database table. Other elements are
defined inside the <class> element to determine the mapping of class properties and
their respective table columns, in addition to their corresponding Hibernate types.

The upcoming sections have a more in-depth discussion of these elements and
their meanings.

Doctype
All XML mappings should start with the Doctype declaration, referring to the
actual path of the DTD document, which is either a file path in the classpath, or
an Internet URL.

The Doctype element is mandatory. Hibernate's XML parser
uses this element to validate the mapping document.

The <hibernate-mapping> root element
All mapping definitions in an XML mapping file are enclosed by a <hibernate-
mapping> element. Typically, the mapping of each persistent class is defined in an
individual XML file. However, you may specify many class mappings in a single file,
all inside the <hibernate-mapping> element.

This element can come with attributes such as the following:

<hibernate-mapping auto-import="true|false"
 package="defaultPackage"
 default-cascade="none|all|delete|persist|merge|
 save-update|evict|replicate|lock|refresh|delete-orphan"
 default-lazy="true|false"
 default-access="field|property|PropertyAccessorClass">
 <!-- nested subelements -->
</hibernate-mapping>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[90]

In this book, underlined words show the default values for each
element. All attributes are optional, unless otherwise noted.

All attributes specify the global properties values for all enclosed definitions. If these
values have not been specified, the default value will be used. However, as you will
see, each enclosed mapping definition can use its own, individual attributes, and
consequently override the default values or the defined global values. The previously
mentioned attributes are explained as follows:

auto-import allows you to name persistent classes in Hibernate queries
with their unqualified names. You may set this to false if you think the
class name would be ambiguous for Hibernate.
package indicates a package prefix that should be considered for unqualified
class names in the mapping document.
default-cascade defines how changes made to an object affect its
associated objects when the object is stored, updated, or removed. Using
this attribute, you can specify that when the object is stored, updated, or
removed, the associated objects are also stored, updated, or removed. In
addition to all, delete-orphan, and none, Hibernate provides various
cascade values for each basic operation it supports. The default is none,
meaning that, by default, no persistence operation on an object is propagated
to its associated objects. Cascading operations are discussed in detail
in Chapter 8.
default-lazy determines whether associated objects are loaded when the
object is loaded. The default is true, meaning that, by default, every object is
loaded with all of its associated objects.
default-access indicates how object fields are accessed, whether directly
(field) or by getter and setter methods (property). Alternatively, you
may use the name of a org.hibernate.property.PropertyAccessor
implementation, which defines a customized access mechanism.

The <class> element
The class element is the first nested element inside the root, which defines the
mapping of an entity class. The most common attributes of this element are as follows:

<class name="className"
 table="tableName"
 abstract="true|false"
 dynamic-update="true|false"
 dynamic-insert="true|false"

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[91]

 polymorphism="implicit|explicit"
 lazy="true|false"
 select-before-update="true|false"
 where="SQLWhereCondition">
…
</class>

The meanings of these attributes and their possible values are as follows:

abstract specifies whether the class being mapped is an abstract class. This
is used when this class in on the top of a class hierarchy, and if any concrete
object of this class exists.
name indicates the fully qualified name of the persistent class.
table determines the name of the target database table in which the objects
of this entity class are persisted.
lazy enables or disables lazy fetching of associated objects. This attribute is
usually used to change the enclosing mapping's default.
select-before-update determines whether Hibernate must load
each object before updating it. If the attribute is set to true, Hibernate does
this to make a comparison and prevent unnecessary updates. However,
loading objects before any updating is often inefficient. Sometimes when the
database contains triggers, it can prevent unnecessary updates (which may
hit triggers).
where specifies an arbitrary SQL WHERE condition to be applied on selecting
the objects of this class. This attribute allows Hibernate to work with a subset
of objects.
dynamic-update indicates that Hibernate should update only modified
columns when it issues a SQL UPDATE statement for updating an object.
The default is false, which means Hibernate updates all columns whether
or not the corresponding values have changed. When you use dynamic-
update, Hibernate must have a current snapshot of the object to make a
comparison. Providing the snapshot and making a comparison have a
cost in performance, so it's almost wise to avoid them. Using dynamic-
update="true" is recommended only when there are sufficient, convincing
reasons, such as when you want to use version-based optimistic locking
(explained in Chapter 12), or when you are working with a table that has an
extremely large number of columns and only a few columns are updated.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[92]

dynamic-insert determines that whether Hibernate should only insert
not-null values in columns when it issues a SQL INSERT statement for inserting
an object or not. The default is false, meaning that Hibernate inserts all values
whether or not any of these values is null. Using dynamic-insert="true"
may be useful when columns have defaults and writing null values would
override the defaults. Note that using dynamic-insert="true" may produce
a performance hit, since Hibernate cannot utilize prepared statement caching
as efficiently as when null and not-null values are included in the SQL
INSERT statements.
polymorphism determines if by querying a persistent class, all instances of
that class and subclasses of that class should be loaded (implicit), or only
the instances of that class that are mapped explicitly with Hibernate mapping
metadata is loaded (explicit). This attribute will be discussed later in
this chapter.

All attributes of the <class> element are optional.

The <id> element
The <id> element determines the object identifier and its corresponding primary key
column in the table. This element also specifies how identifiers are generated for new
instances of the class. The general form of the <id> element is as follows:

<id name="indentifierProperty"
 type="identifierType"
 column="identifierColumn"
 unsaved-value=" null|any|none|undefined|id_value">
 <generator class="identifierGeneratorClass"/>
</id>

Here are the meanings of these attributes and their possible values:

name specifies the object identifier's name.
column sets the name of the table column that contains the primary key, and
therefore holds the object identifier. If the column attribute is not specified,
the value of the name attribute is considered instead.
type specifies the corresponding Hibernate type for the column. Hibernate
uses this value with the selected dialect to pick the correct SQL data type
when Hibernate exports the database schema from the mapping metadata.
For example, the long and int values in most databases are transformed to
BIGINT and INTEGER SQL types, respectively. We'll discuss Hibernate types
in more depth in Chapter 7.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[93]

unsaved-value indicates the identifier value of the newly instantiated
objects, which have not yet been persisted. Depending on the value you set,
Hibernate determines whether an UPDATE or INSERT SQL statement is needed
when the object is persisted. This attribute is mandatory. Commonly, zero
(0) is used as the value when the identifier type is a number such as integer,
long, and so on.

The <generator> element, nested within <id>, specifies how identifiers are
generated for new instances of the class. This element takes a class attribute,
that is, a Java class that generates unique identifiers for instances of the persistent
class. Hibernate provides many built-in generators which satisfy most applications
requirements. Still, when you need a particular kind of generator not provided by
Hibernate (such as when you use a particular class instead of string, integer, long,
and so on for an identifier), you can define a custom generator by implementing the
IdentifierGenerator interface.

The following table shows Hibernate's built-in ID generators, which can easily be
referred to by their short names:

Generator Short name Description
sequence This generator works with the sequence column type supported

by DB2, PostgreSQL, Oracle, SAP DB, Mckoi, or a generator in
Interbase. Both sequence and generator column types hint at
the database to generate the ID values. The returned identifier is
of type long, short, or int.

increment This generator picks up the maximum primary key column
value of the table at Hibernate startup, and then produces a
series of identifier values by incrementing the preceding ones.
This generator cannot be used in situations in which multiple
processes access the database. The returned identifier value is of
type long, short, or int.

identity This generator works with identity columns in DB2, MySQL, MS
SQL Server, Sybase, and HypersonicSQL. The returned identifier
is of type long, short, or int.

native This generator selects another identifier generator, such
as sequence, identity, and hilo, depending upon the
underlying database. The main advantage of this generator is that
it keeps your application portable to many different databases.

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[94]

Generator Short name Description
hilo This generator uses a High/Low algorithm to generate identifiers

efficiently. According to this algorithm, each identifier value
is made of two parts: a high value, which comes from a source
common to all object identifier generators, and a low value, which
is generated by your local object-identifier generator. The high
values are more expensive, since they must be fetched from a
central source available to all, but each of these values is unique
to an object-identifier generator. The low value is initialized and
incremented by the generator itself, locally, which makes this
value easy and fast to obtain and to manage. The concatenation of
the high and the low makes a unique key. To use this generator,
you need a table and column (by default, hibernate_unique_
key and next_hi, respectively) as the source of high values.

seqhilo This generator uses the High/Low algorithm, in which the high
values are generated by a named database sequence. Note that
you can use this generator if the database sequence is supported.

guid This generator uses a database-generated identifier that is unique
in any context. For this reason, this generator is called global
unique identifier (guid). The guid generator only works with
databases that support a guid type, including MS SQL Server
and MySQL.

uuid This generator uses a 128-bit Universally Unique Identifier
(UUID) algorithm to generate identifiers of type string, unique
within a network. The UUID algorithm uses the local IP address,
in combination with the startup time of JVM, the current time,
and a unique static counter in JVM, to generate the unique
identifier. The generated identifier is encoded as a 32-digit
hexadecimal string.

assigned This does not refer to a built-in generator for identifiers. If this is
used, the application must generate an identifier itself and assign
it to the object before save() is called. This is the default strategy
if no <generator> element is specified.

select This generator performs a select query to read back the primary
key value that has been assigned by a database trigger to the just-
inserted row. This generator uses a key option, which refers to an
additional, unique identifier key column, and allows Hibernate to
select the just-inserted row.

foreign This generator uses the identifier of another associated
object. Usually, this generator is used when there is a
one-to-one relation.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[95]

The <property> element
The <property> element maps a primitive property of the class, except for the
identifier, to a particular column. The common attributes of this element come in
the following form:

<property name="propertyName"
 type="propertyType"
 lazy="true|false"
 optimistic-lock="true|false"
 generated="never|insert|always"
 column="columnName"
 not-null="true|false"
 unique="true|false" />

Here are the meanings for these attributes and their possible values:

name refers to the property name, which starts with a lower-case letter.
type specifies the corresponding Hibernate type of the column.
lazy indicates whether the property value should be loaded lazily when an
instance is first accessed.
optimistic-lock determines whether to use the optimistic lock when this
property is updated.
generated indicates whether the property value is assigned by the
application, or generated by the database. The valid values are never,
insert, and always. The default value never, specifies that the database
never generates the value. The insert value means that the database
generates the value when the object is inserted, but never regenerates it in
subsequent updates. always indicates that the database always generates the
value, whether an insert or update statement is performed.
column specifies the table column in which the property is persisted.
However, column may be omitted. When it is, the property name, given by
the name property, is considered instead.
not-null indicates whether the column may maintain null values.
unique specifies whether to allow duplicate values for the column.

Except for name, all of these attributes are optional.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[96]

The formula attribute
The formula attribute can be used with the <property> element to represent a
computed property. In this case, formula refers to an HQL expression (discussed in
Chapter 9) by which the property is dynamically computed, instead of being loaded
from a particular column. For example, consider the count property in the Student
class, representing the number of all students persisted in the database:

public class Student {
 private int id;
 private int count;
 //other fields and getter&setter methods
}

The formula attribute can indicate how the count property should be initialized with
the number of all student objects when each Student object is loaded:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch05.Student"
table="STUDENT">
 <id name="id" type="int" column="id">
 <generator class="increment"/>
 </id>

 <property name="count" formula="(SELECT COUNT(*) FROM Student)"/>
 <!--other properties -->
<hibernate-mapping>

The insert and update attributes
It is possible to use insert and update attributes for the <property> element, to
specify if the mapped property should appear in the SQL INSERT or SQL UPDATE
statements, when the object is inserted (saved for the first time) or updated. For
instance, you may use insert="false" and update="false" for a property that is
valued by a database trigger. Therefore, the application never assigns a value to it.
You may also use insert="true" and update="false" for a property which is just
inserted and never updated. The insert="false" and update="false" are useful
for read-only properties that do not have corresponding columns in the database and
are computed from other class properties.

Metadata in annotations
Let's now see how annotation mappings can be created for our simple class.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[97]

Before going ahead, make sure the hibernate-annotations.jar file,
and ejb3-persistence.jar, in the application classpath. They are the
required libraries to EJB-3 and Hibernate proprietary annotation API.

The following code shows the Student class which is now annotated:

package com.packtpub.springhibernate.ch05;

import java.util.Date;
import java.util.Calendar;
import java.io.Serializable;

import javax.persistence.*;

@Entity

@Table(name="STUDENT")

public class Student implements Serializable{
 private int id;
 private String firstName;
 private String lastName;
 private String ssn;
 private Date birthday;
 private String stdNo;
 private Date entranceDate ;

 //constructors

 @Id

 @Column(name = "ID")

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 @Basic

 @Column(name="FIRST_NAME")

 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 @Basic

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[98]

 @Column(name="LAST_NAME")

 public String getLastName() {
 return lastName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 @Basic

 @Column(name="SSN")

 public String getSsn() {
 return ssn;
 }

 public void setSsn(String ssn) {
 this.ssn = ssn;
 }

 @Basic

 @Column(name="BIRTHDAY")

 public Date getBirthday() {
 return birthdate;
 }

 public void setBirthdate(Date birthday) {
 this.birthdate = birthdate;
 }

 @Basic

 @Column(name="STD_NO")

 public String getStdNo() {
 return stdNo;
 }

 public void setStdNo(String stdNo) {
 this.stdNo = stdNo;
 }

 @Basic

 @Column(name="ENTRANCE_DATE")

 public Date getEntranceDate() {
 return entranceDate;
 }

 public void setEntranceDate(Date entranceDate) {
 this.entranceDate = entranceDate;
 }

 public int getAge(){

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[99]

 Calendar c = Calendar.getInstance();
 c.setTime(new java.util.Date(getBirthdate().getTime()));
 int birthYear = c.get(Calendar.YEAR);
 c.setTime(new java.util.Date());
 int now = c.get(Calendar.YEAR);
 return now-birthYear;
 }

 //hashCode() and equals() methods
}

As you can see, the class imports the javax.persistence package. This package
includes the standard EJB-3 annotation API. This API allows us to develop a
portable application.

Hibernate annotations may be used to annotate the class definition, the properties,
and the methods. Let's explore what each annotation means and how it can be used.

@Entity
The @Entity annotation, which comes before the class definition, is used to mark a
class as an entity class. This is done as follows:

import javax.persistence.*;

@Entity
public class Student implements Serializable{
 …
}

@Entity is located in javax.persistence and is used immediately before the
class definition.

@Table
Similar to @Entity, @Table is set at the class level and provides information about
the target table, in which the objects of the entity class are stored. This annotation is
optional. Therefore, if it is omitted, Hibernate maps the entity class to a table with
the same name as the entity class. However, you may use the name attribute of this
annotation to change this default behavior. Here is an example:

import javax.persistence.*;

@Entity
@Table(name="STUDENT_TBL")
public class Student implements Serializable{
 …
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[100]

The objects of this class will be persisted in a table named STUDENT_TBL. @Table has
another important attribute, named UniqueConstraint. It will be discussed in the
coming sections.

@Id and @GeneratedValue
The @Id annotation is used to mark a property as the class identifier. This annotation
can be put either on the property or the corresponding getter method. This
placement determines the default access strategy to the class properties, either
field or property.

By default, the @Id annotation chooses the best key generation strategy. However,
it is possible to override this default behavior through another annotation, named
@GeneratedValue which has two attributes, strategy and generator.

The strategy attribute can have one of the four values specified by the javax.
persistence.GeneratorType enumeration. The values are as follows:

AUTO makes Hibernate choose the appropriate generator based on
the database.
IDENTITY makes the database be responsible for key generation.
SEQUENCE makes Hibernate use a database sequence as the generator for
primary key values.
TABLE tells Hibernate to use a proprietary table in the database to hold the
key values.

AUTO is the default value for @GeneratedValue, if this
annotation is omitted.

When SEQUENCE or TABLE is used, you need to use the @SequenceGenerator or
@TableGenerator to determine the details of the key generation strategy. Here is
an example of @SequenceGenerator:

@Id
@SequenceGenerator(name="seqId",sequenceName=" SEQ")
@GeneratedValue(strategy= GeneratorType.SEQUENCE,generator="seqId")
public int getId() {
 return id;
}

As you can see, @SequenceGenerator comes with two attributes, name and
sequenceName. The name attribute only provides an identifier to the sequence
generator, which can be used by the @GeneratodValue. The sequenceName
attribute determines the database sequence object.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[101]

Similarly, @TableGenerator is used to specify the details of the table sequence
generator. Here is an example:

@Id
@TableGenerator(name="keys", table="KEYS_TBL")

@GeneratedValue(strategy= GeneratorType.TABLE,generator="keys")
public int getId() {
 return id;
}

The name attribute provides an identifier for the generator. The table
attribute specifies the name of the table which holds the primary key values.
@TableGenerator can be used with a variety of other attributes. Most importantly,
the pkColumnName and pkColumnValue attributes are used when the table is used
by more than one entity object, and each one has its own primary key column and
primary key column value.

@Basic
All simple properties of an entity class are stored and retrieved by Hibernate, even
if they are not marked up with annotations. These simple properties can be Java
primitives, primitive wrappers, array of primitives, or any Serializable class.

@Lob
Any Java type that is mapped to a target column with the type of java.sql.Blob
or java.sql.Clob is annotated with @Lob. These types include java.sql.Clob,
Character[], char[], String for Clob, and java.sql.Blob, byte[], or Byte[]
for Blob. The following example shows this:

@Lob
public String getDescription() {
 return description;
}

@Lob
public byte[] getEncryptedCode() {
 return encryptedCode;
}

As you can see, both the String and byte[] types are annotated with @Lob.

@Transient
The @Transient annotation is used to mark a property as transient, so that the
property will not be persisted.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[102]

@Column
By default, Hibernate stores each persistent property in a column with the same
name as the property. The @Column annotation can be used in cases where the
column name is not the same as the property name. This annotation also allows
information to be provided for the DDL.

Mapping inheritance hierarchy
An entity class may be derived from another entity class. Although the subclass
has its own properties and associations, it also inherits the superclass properties
and associations. As a result, to persist a subclass object, we need to persist its own
properties and associations, as well as those it inherits. The persisting should occur
in a way that allows reconstruction of the original object later.

Databases, however, do not naturally provide a solution for persisting inheritance
hierarchies. Therefore, each application may use its own solution for this purpose.

Let's continue our discussion with a simple example. The following figure shows a
class diagram of an inheritance hierarchy with the Person, Student, and Teacher
classes. Through this example, we will see the different approaches Hibernate
allows for mapping an inheritance hierarchy.

Person

-id
-firstName
-lastName
-ssn
-birthdate

Student

-stdNo
-entranceDate

Teacher

-degree
-major

Hibernate has three distinct ways to map an inheritance relationship:

Use one table for each concrete (nonabstract) class
Use one table for each subclass, including interfaces and abstract classes
Use one table for each class hierarchy

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[103]

The sections that follows discuss these approaches, along with their advantages
and disadvantages.

One table for each concrete class
In this approach, a single table is used for each concrete class. All persisted
properties of each concrete class, including its own properties and its inherited
properties, are mapped to a single table. Since there are no instances of interfaces or
abstract classes, there is no need for mapping definitions.

To map our example class hierarchy using this approach, the database needs the
tables shown in the following figure. Each table persists its respective entity class
regardless of any inheritance considerations:

TEACHER STUDENT PERSON

PK PK PKTEACHER_ID

FIRST_NAME
LAST_NAME

FIRST_NAME
LAST_NAME

DEGREE
MAJOR

STUDENT_ID

STD_NO
ENTRANCE_DATE

ID

FIRST_NAME
LAST_NAME
SSN
BIRTHDATE

This approach has four shortcomings, which are explained below:

Imperfect support for polymorphic associations: The problem occurs when
a parent class is associated with another persistent class. In our example,
suppose Person is associated with an Address class, so both Student and
Teacher are associated with Address, as well. To map this class hierarchy
according to this approach, we need these four tables in our database
schema: PERSON, STUDENT, TEACHER, and ADDRESS. If Address has a
many-to-one relationship with Person (more than one person may have
the same address), then the ADDRESS table should provide a foreign key
reference to all PERSON, STUDENT, and TEACHER tables, in order to establish
database-level relationship, but this is not possible.
Low-performance capability: Another shortcoming of this approach is
that all objects persisted in subclass tables are naturally instances of a
superclass. Therefore, to query all superclass objects, you need to query
both the superclass and all subclass tables. This results in a negative
impact on performance, especially when the class hierarchy is complex.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[104]

Verbose query statements: For the same reason as in the previous bullet, to
query objects of a superclass, you need to write verbose query statements
which include both subclass and superclass objects. This would be very
difficult in practice when you are testing the database behavior through
hand-written queries, or when the database is used by another application
through pure JDBC.
Difficult to maintain: Another shortcoming of this approach is its
maintenance cost. It produces a complex and dirty schema as several
columns are duplicated across many tables. Therefore, any changes to the
parent class may cause changes to a large number of tables, including its
respective table and all of its subclass tables. Verbose query statements can
also increase the maintenance cost.

The mapping of this strategy is very easy and straightforward. If you are using XML
mappings, you just need to use an individual hbm.xml file for each concrete class
regardless of their relationship.

To use annotations, you need to use the @Inheritance annotation with its strategy
attribute. Here is an example:

@Entity
@Inheritance(strategy = TABLE_PER_CLASS)
public class Student implements Serializable {
 ...
}

As you can see, the strategy attribute determines the type of inheritance mapping,
which is TABLE_PER_CLASS for this case.

This approach is not recommended, except when the object model is not very
complex and polymorphism is not required.

One table for class hierarchy
In this approach, the entire class hierarchy can be mapped to a single table. This table
should have proper columns for all properties of all classes in the class hierarchy.
The table uses an extra column, called the discriminator column, which allows
recognition of the class to which each row belongs. The following figure shows
the PERSON table, which maintains all of the objects of our hierarchy. In this, the
PERSON_TYPE is the discriminator column:

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[105]

PERSON

PK ID

FIRST_NAME
LAST_NAME
SSN
BIRTHDATE
STD_NO
ENTRANCE_DATE
DEGREE
MAJOR
PERSON_TYPE<<Discriminator>>

The benefits of this approach are simplicity and efficiency. Polymorphic associations
are implemented simply by foreign key constraints, and you can easily retrieve
desired objects by simple queries without requiring any JOIN or UNION clause.
However, this approach also has its disadvantages. Some columns are shared
between derived classes, and each column must be defined nullable or not-nullable,
the classes can use different nullable status for their shared columns.

To use this approach, first determine the discriminator column through the
<discriminator> element, which defines the column name and type. Second, use
the <class> and its nested <subclass> elements inside the mapping document for
mapping the superclass and its derived classes. Third, each <class> or <subclass>
element should use its desired discriminator value. Specify this value through the
discriminator-value attribute.

The following code shows this approach for mapping the Person, Student, and
Teacher classes:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class name="Person" table="PERSON"
 discriminator-value="PE">
 <id name="id" column="ID" type="long">
 <generator class="native"/>
 </id>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[106]

 <discriminator column="PERSON_TYPE" type="string"/>

 <property name="firstName" column="FIRST_NAME" type="string"/>
 <property name="lastName" column="LAST_NAME" type="string"/>
 <property name="ssn" column="SSN" type="string"/>
 <property name="birthdate" column="BIRTHDATE" type="date"/>

 <subclass name="Student" discriminator-value="ST">
 <property name="stdNo" column="STD_NO" type="string"/>
 <property name="entranceDate" column="ENTRANCE_DATE"
 type="date"/>
 </subclass>

 <subclass name="Teacher" discriminator-value="TE">
 <property name="degree" column="DEGREE" type="int"/>
 <property name="major" column="MAJOR" type="int"/>
 </subclass>
 </class>
</hibernate-mapping>

Note that the discriminator column is used merely for mapping. It has no
corresponding values in the entity classes.

You can nest a <subclass> element within the <subclass> element to specify the
mapping of a derived class from the subclass.

As for the table per class strategy, the @Inheritance annotation is used to mark up
the entity class. But now SINGLE_TABLE is used as the value for the strategy attribute.
It is also needed to use the @DiscriminatorColumn and @DiscriminatorValue
annotations to specify the discriminator column, as well as the value in that column
which is used for the entity class. The following code shows how annotations are
used to map our example class hierarchy:

@Entity
@Inheritance(strategy = SINGLE_TABLE)
@DiscriminatorColumn(
 name="PERSON_TYPE",
 discriminatorType=STRING
)
@DiscriminatorValue("PE")

public class Person implements Serializable {
...
}

The @DiscriminatorColumn has two attributes, name and discriminatorType,
which specify the name and the type of the discriminator column. For
mapping the subclasses of Person, you just need to use @Inheritance
and @DiscriminatorValue as follows:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[107]

@Entity
@Inheritance(strategy = SINGLE_TABLE)
@DiscriminatorValue("ST")

public class Student extends Person{
 ...
}

As you can see, ST now is used as the value of @DiscriminatorValue.

One table per subclass
You may use distinct tables for persisting each class in the hierarchy. The
inheritance relationships between objects are established by foreign key
constraints between tables.

This approach is analogous to the first approach, in which all of the properties
of each class (its own and those that are inherited) are persisted into one table.
However, unlike that approach, the one-table-per-subclass approach lets you use
one table for each class' own properties. With this approach, you can imagine the
database schema like the object model, a table corresponding to each class.

The following figure shows tables and their relations for mapping the Person,
Student, and Teacher classes using this approach:

TEACHER STUDENT PERSON

PK PK PKTEACHER_ID

DEGREE
MAJOR

STUDENT_ID

STD_NO
ENTRANCE_DATE

ID

FIRST_NAME
LAST_NAME
SSN
BIRTHDATE

The STUDENT_ID and TEACHER_ID columns are foreign keys to the ID column of
the PERSON table. While each object of the Person class is persisted with a row in
the PERSON table, each Student or Teacher object is represented with a row in the
STUDENT or TEACHER table, as well as a row in the PERSON table. This approach is
simple to implement since each persistent class and its properties correspond to
one table and its columns, respectively. The approach is also easy to manage, as any
changes to a single persistent class makes a single change to the database schema.
The data is fully normalized.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[108]

Use the <joined-subclass> elements in the mapping file to map the class hierarchy.
The following code shows this approach in persisting our class hierarchy:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class name="Person" table="PERSON">
 <id name="id" column="ID" type="long">
 <generator class="native"/>
 </id>
 <property name="firstName" column="FIRST_NAME" type="string"/>
 <property name="lastName" column="LAST_NAME" type="string"/>
 <property name="ssn" column="SSN" type="string"/>
 <property name="birthdate" column="BIRTHDATE" type="date"/>

 <joined-subclass name="Student" table="STUDENT">
 <key column="STUDENT_ID"/>
 <property name="stdNo" column="STD_NO" type="string"/>
 <property name="entranceDate" column="ENTRANCE_DATE"
 type="date"/>
 </joined-subclass>

 <joined-subclass name="Teacher" table="TEACHER">
 <key column="TEACHER_ID"/>
 <property name="degree" column="DEGREE" type="int"/>
 <property name="major" column="MAJOR" type="int"/>
 </joined-subclass>
 </class>
</hibernate-mapping>

As you can see, each <joined-subclass> element has a nested <key> element,
which represents the subclass table's primary key column that is a foreign key
constraint to the parent table. In this example, STUDENT_ID and TEACHER_ID are
the primary keys, and they are also foreign keys to the PERSON table.

To map this strategy with annotations, strategy=JOINED is used for the
@Inheritance annotation in the superclass. Without any other annotations,
Hibernate joins subclass tables with the superclass table using the same primary key
names. The following code shows using the annotation mapping of the join strategy:

@Entity
@Inheritance(strategy=InheritanceType.JOINED)
public class Person implements Serializable {
 ...
}

@Entity
public class Student extends Person{
 ...
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 5

[109]

If tables are joined by columns with different names, the @PrimaryKeyJoinColumn
and @PrimaryKeyJoinColumns annotations can be used. Here is an example:

@Entity
@Inheritance(strategy=InheritanceType.JOINED)
public class Person implements Serializable {
 ...
}

@Entity
@PrimaryKeyJoinColumn(name="STUDENT_ID")
public class Student extends Person{
 ...
}

In the example above, the STUDENT table is joined with PERSON using the join
condition PERSON.id = STUDENT.STUDENT_ID.

The main shortcoming of this approach appears when the class hierarchy grows
vertically: class A has a B subclass, and class B has a C subclass, and so on. When
a child class is queried, Hibernate must join the child table and all of its parent
tables to construct the target objects. This has a negative effect on performance.
Furthermore, tables in the database are not self-explained. In other words, the
bounds of the data in those tables are not clear for everyone who uses the data
directly without Hibernate.

The dynamic-update and dynamic-insert attributes, which are
used with the class element to avoid inserting null property values
and to avoid updating unchanged property values, respectively, are not
inherited by subclasses. For that reason, they should be duplicated in the
<subclass> or <joined-subclass> elements.

Implicit polymorphism versus explicit
polymorphism
Hibernate allows polymorphic relations to be handled by providing the
polymorphism attribute through the <class>, <subclass>, and <joined-subclass>
elements. With this attribute, you can determine whether to use implicit or
explicit query polymorphism.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Mappings

[110]

Implicit polymorphism allows querying of all instances of a class and its subclasses
by a query which only names the class itself. Explicit polymorphism allows
querying only of instances of the class and its subclasses mapped inside this
<class> declaration as a <subclass> or a <joined-subclass>. For most purposes,
the default, polymorphism="implicit", is appropriate. Explicit polymorphism is
useful when the class hierarchy is mapped to the same table. In that case, we are not
interested in all instances when querying the superclass.

Summary
In this chapter, you learned the principles of entity classes and their mapping
definitions. Hibernate defines only a few requirements for persistent classes. The
structure of all persistent classes must follow a POJO programming model, a
customized and simplified form of the JavaBeans model, with a bit of additional
requirements. The transparent persistence feature of Hibernate indicates that these
classes do not depend on the Hibernate API or any persistence logic. This increases
the application's portability and keeps it consistent with any persistence technology.

After designing the object model, you need to give Hibernate information about
the target tables and their columns, in which the objects properties are persisted.
You accomplish this through the mapping documents. Every mapping document
is written in XML, starting with a mandatory DOCTYPE declaration, referring to the
DTD document, and followed by <hibernate-mapping> as the root element. Inside
the root, the <class> element is used to map the entity class. This element comes
with name and table attributes, indicating the entity class name and the respective
target table.

Inside <class>, the <id> element comes first. This element associates the identifier
property of the class with the primary key column of the table. It also specifies how
to generate an identifier value for new instances of the class. After <id>, <property>
elements appear to map primitive properties of the class.

Hibernate allows inheritance hierarchies to be mapped in three distinct ways: using
one table for each concrete class, using one table for each subclass, and using one
table for each class hierarchy.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings
In Chapter 5, you learned the fundamental concepts behind Hibernate mappings.
In this chapter, we will look at some other issues in mapping definitions, including
the mapping of collections and associations. We will see how persistent classes can
be divided into value types and entity types, and how these may affect the mapping
definition. As you probably know, there are different types of object associations:
one-to-one, one-to-many, many-to-one, and many-to-many. The many side of the
relationship is represented by an object of a java.util.Collection or a
java.util.Map.

The mapping definitions introduced in this chapter are explained with simple
examples from the educational system application. Let's begin with the simplest
form of class mapping, called component mapping.

Most examples in this chapter are not listed in complete form. Setter and
getter methods are always omitted, and each persistent class includes
only the properties relevant to the current discussion.

Mapping components
Commonly, each persistent class is stored in its own database table. This means
we normally use a database table which corresponds to each persistent class.
Although this is a common approach, it is not always taken. In practice, there is a
situation where you may want to store more than one persistent class in a single
database table.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[112]

This situation is where you have two persistent classes, one of them is always
represented as a property of the other one and is used nowhere else. In other words,
no object of one class that is represented as the property of the other class lives
independently in the application. For instance, suppose our application includes two
persistent classes: Student and Phone. If any Phone instance is always a property of
a Student instance and not of any other class, we can say no Phone object can live
independently of a Student object in the application. In this case, Phone is called a
component of Student, or simply a value object.

Why then don't we merge the two classes into a single persistent class? The answer
is simple: these classes model our domain more comprehensibly. You may then
ask why we don't treat them normally and persist them in individual tables. This is
because the two classes together form a single item of data, and it is neither attractive
nor reasonable to present a single piece of data in two distinct tables. We use one
identifier for both persistent classes for exactly the same reason. In our example,
the Phone class does not have an identifier. Instead, it can use its associated
Student identifier.

Hibernate provides the <component> element for such situations. This element
is analogous to the <property> element, but unlike <property> which maps a
primitive type, <component> maps an associated persistent object to extra
columns in a table. This element is commonly used in the following form:

<component name="propertyName"
 class="className"
 lazy="true|false"
 unique="true|false">

The meanings of these attributes and their possible values are as follows:

name (mandatory) refers to the name of the object field persisted.
class (optional) specifies the classname of the mapped field. If class is not
specified, Hibernate uses the reflection API to find the field's class. Use the
qualified name for duplicate classes.
lazy (optional) determines whether lazy loading is used for the field.
unique (optional) indicates whether all columns to which the associated
object is mapped are unique.
The <component> element can come with other attributes, such as insert,
update, and access. These have the same meanings when they are used for
the <class> element.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[113]

In this chapter, just like in the previous chapter, underlined
words show the default values.

The following code shows an example of using the <component> element, in which
the Student class and its composite field, Phone, are mapped to a single table:

public class Student {
 private Phone phone;
 //other fields and getter/setter methods
}

public class Phone {
 private String comment;
 private String number;
 //other fields and getter/setter methods
}

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Student"
table="STUDENT">
 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>
 <component name="phone"
class="com.packtpub.springhibernate.ch06.Phone">
 <property name="comment" column="COMMENT"/>
 <property name="number" column="PHONE_NUMBER"/>
 </component>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

Persistent classes are called value types if they do not live
independently in the application and are always represented
without an identifier value. Other normal persistent classes are
called entity types, which live independently and are always
identified with their identifier value. Phone and Student are
examples of value type and entity type, respectively.

The following simple rules identify value types:

They do not hold an identifier value.
They do not live independently in the application.
They are never shared between two or more persistent classes.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[114]

For example, if Phone is a property for both Student and another persistent class
(for example, Teacher), then you should change Phone to an entity type by assigning
an identifier property to it and storing its instances in a distinct database table. Note
that sharing a persistent class among other persistent classes is different from sharing
an instance among other instances.

The @Embedded annotation is used to annotate a property to map as a component.
Therefore, in our case, we would have the Student class as follows:

@Entity
@Table(name = "STUDENT")
public class Student {

 @Embedded
 private Phone phone;
 //other fields and getter/setter methods
}

It is also possible to annotate the dependent class as a component with the
@Embeddable annotation. Therefore, we don't need the @Embedded annotation
anymore, and Hibernate always maps the object of the dependent class as a
component. The following shows the Phone class annotated with @Embeddable:

@Embeddable
 public class Phone {

 private String comment;

 @Column(name="PHONE_NUMBER")
 private String number;
 //other fields and getter/setter methods
}

In the class above, we just marked the Phone class as a dependent component
class. Therefore, all of Phone's properties will store to additional columns of the
STUDENT table.

Mapping collections
When a class has a property of type java.util.Collection, or any of its subclasses,
there is certainly a one-to-many or many-to-many relationship between the class and
the collection's elements. The collection may contain objects of either value type or
entity type. Regardless of the object type the collection maintains, we always need
an extra table to store the collection elements. Obviously, this table must include a
primary key column if the collection maintains entity types.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[115]

Java provides different collection types, all represented as subinterfaces or
implementations of java.util.Collection. Additionally, Java provides maps,
represented by implementations and subinterfaces of the java.util.Map interface.
The Map interface does not extend java.util.Collection, so it is not called a
collection. However, since both maps and collections represent nearly the same
concepts, with methods of the same names and nearly the same behavior, maps can
be viewed as collections. Collections and maps provide a hierarchy of interfaces with
different implementation classes.

The java.util.Collection has two subinterfaces: java.util.List and java.
util.Set. The List allows duplicate elements and maintains elements based on
their positions in the list. In contrast, Set does not allow duplicate elements and
does not preserve elements order. Map holds the objects as key/value pairs.

The following table shows the collection and map interfaces and the corresponding
XML elements used for mapping them. This table also shows which collection and
map is initialized with which concrete class:

Java Collection Type Description Hibernate Mapping
Definition

java.util.Collection (Initialized with java.util.
ArrayList) The root interface
for java.util.List and
java.util.Set collections.
It provides methods such as
add(), remove(), size(),
and toArray().

Mapped with <bag> and
<idbag> elements.

java.util.List (Initialized with java.util.
ArrayList) A collection that
maintains its elements in a
particular order unless it is
modified. Each element can be
accessed through its index in
the list.

Mapped with the <list>
element. This element uses
an extra column in the
target table to preserve the
position of each element
in the list. Any java.
util.List object can also
be mapped with <bag>
and <idbag> if no real
positional order is needed.

java.util.Set (Initialized with java.util.
HashSet) A collection that
extends the java.util.
Collection interface and
does not allow duplicate
elements. Its elements are
not necessarily stored in any
particular order.

Mapped with the <set>
element.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[116]

Java Collection Type Description Hibernate Mapping
Definition

java.util.SortedSet (Initialized with java.util.
TreeSet) A subinterface
of java.util.Set, whose
elements are sorted.

Mapped with the <set>
element. This element can
be used with an additional
sort attribute, which
dictates that the elements
must be sorted based on
property or object.

java.util.Map (Initialized with java.util.
HashMap) Holds its elements
as key/value pairs. The keys
are always unique, but values
can be duplicate.

Mapped with the <map>
element.

java.util.SortedMap (Initialized with java.util.
TreeMap) Extends java.
util.Map and maintains the
keys sorted.

Mapped with the <map>
element. This element can
be used with an additional
sort attribute, which
dictates that the elements
must be sorted based on
property or object.

Let's see how the <set>, <bag>, <list>, <idbag>, and <map> elements allow us to
map collections and maps.

The <set> element
The <set> element maps an object of type java.util.Set which, unlike java.
util.List, does not permit duplicates. This is the common way to use this element:

<set name="setName"
 table="SET_TABLE"
 inverse="true|false"
 lazy="true|false"
 order-by="aTableColumn"
 cascade="none|all|delete|persist|merge|
 save-update|evict|replicate|lock|refresh"
 sort="unsorted|natural|ComparatorClass"/>

The meanings of these attributes and their possible values are as follows:

name (mandatory) refers to the property name that represents an object of
type java.util.Set.
table (optional) specifies the table that stores the associated entities
represented by the Set object. If table is not specified, the property name is
used instead.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[117]

inverse (optional) specifies whether the relationship can be navigated in
the opposite direction. inverse="true" tells Hibernate the developer is
responsible to manage the collection and Hibernate should not synchronize
the collection with the database when the link between two instances
is manipulated.
lazy (optional) determines lazy loading mode in fetching the objects in
the set.
order-by specifies an arbitrary SQL ORDER BY clause with an optional asc
or desc, which affects the populated Set object. Note that the string you use
for this attribute does not include the ORDER BY keywords. (This is discussed
separately in the next section of this chapter.)
cascade (optional) determines how any persistent operation on the object
affects its associated objects in the set.
sort determines whether a sorted set is to be used. The valid values include
unsorted, natural, or any Comparator class. (This is discussed separately in
the next section of this chapter.)

Assume that the Student class has a property of type java.util.Set, called
papers. This property represents all of the papers that a Student has written. The
papers property maintains the file names of a student's papers in the system, but no
extra information. To map this structure to the database, we use an extra table called
STUDENT_PAPER. This table has two columns, STUDENT_ID and PAPER_PATH, which
determine the identifier of the owner student and the path of the paper in the system,
respectively. The following shows the Student class and its mapping file:

public class Student {
 private int id;
 private String firstName;
 private Set papers = new HashSet();
 //other fields and setter/gettter methods
}

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Student"
table="STUDENT">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="firstName" column="FIRST_NAME" type="string"/>

 <set name="papers" table="STUDENT_PAPER">
 <key column="STUDENT_ID"/>
 <element type="string" column="PAPER_PATH"/>
 </set>
 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[118]

As you can see, we have specified the STUDENT_PAPER table to store the elements of
the papers property through the <set> element. The nested <key> element specifies
the column in STUDENT_PAPER that is a foreign key to the primary key value of the
associated Student object (in this case, STUDENT_ID is the foreign key to the ID
primary key). The nested <element> element specifies the type and destination of
each element in the Set. In our case, this is a string that represents the file path. The
following figure shows the database table structure for this type of mapping:

The <bag> element
The <bag> element is used to map an object of java.util.Collection and its
subinterface, java.util.List. However, the <bag> element is not exactly a match
for the List interface. While List keeps the items in order, the order of items
in <bag> is ignored and is not kept in the database. The <bag> element offers
the order-by attribute, which specifies an arbitrary SQL ORDER BY clause for the
ordering of populated objects. The main shortcoming in <bag> is the lack of objects
to be used as keys for the elements in the <bag>, which decreases performance when
updating or deleting elements. When an element of the bag changes, Hibernate
must update all of the elements since there is no way for Hibernate to find out
which element has changed. Except for the sort attribute, all of the <set>
element's attributes are supported by <bag> and have the same meanings.

To see how to use the <bag> element, suppose the papers property of the Student
class, which is already presented as an instance of java.util.Set, now has changed
to a property of type java.util.Collection. Although it is not realistic for the user
to have written duplicate papers, we suppose that is the case in order to demonstrate
how to use the <bag> element. Here is the Student class and its mapping definition
with the <bag> element:

public class Student {
 private int id;
 private String firstName;
 private Collection papers = new ArrayList();
 //other fields and setter/gettter methods
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[119]

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Student"
table="STUDENT">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="firstName" column="FIRST_NAME" type="string"/>

 <bag name="papers" table="STUDENT_PAPER">
 <key column="STUDENT_ID"/>
 <element type="string" column="PAPER_PATH"/>
 </bag>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

As with <set>, we used STUDENT_PAPER to maintain the paper file paths. This table
includes the STUDENT_ID column, which is a foreign key to the primary key of
the STUDENT table. The paper file paths are stored in the PAPER_PATH column. The
database structure for the <bag> element is exactly like <set>. The only difference is
that with <bag> you are allowed to store duplicate elements.

The <idbag> element
Like <bag>, the <idbag> element can be used to map an object of type
java.util.List, but not necessarily java.util.Collection. However,
you can use the <idbag> element for a Collection property if the property is
initialized with an implementation of type java.util.List. Neither <bag> nor
<idbag> cares about the order of its elements. However, <idbag> uses an additional
key table column, which improves the performance of updating and deleting the
collection's elements. Using this column, Hibernate can determine which element
has changed or been removed. The following code shows the Student class and its
mapping definition, which now uses the <idbag> element:

public class Student {
 private int id;
 private String firstName;
 private Collection papers = new ArrayList();
 //other fields and setter/gettter methods
}

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Student"
table="STUDENT">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[120]

 </id>

 <property name="firstName" column="FIRST_NAME" type="string"/>

 <idbag name="papers" table="STUDENT_PAPER">
 <collection-id type="long" column="STUDENT_PAPER_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="STUDENT_ID"/>
 <element type="string" column="PAPER_PATH"/>
 </idbag>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

As you can see, we used a nested <collection-id> element inside <idbag>. The
<collection-id> element specifies the collection table's primary key column, which
holds the identifier value for each collection's element. The <generator> element
determines the Hibernate strategy for generating the value for this identifier. In this
case, we used sequence. Other elements are like those used for the <bag> element.
The following figure shows the database table structure for this type of mapping:

The STUDENT_PAPER_ID column never affects the Java code.
Hibernate uses this column internally to manage the collection.

The <list> element
The <list> element, like <bag> and <idbag>, can map an object of type
java.util.List. However, unlike those elements, <list> uses an extra column
to maintain the order of the elements in the List. The nested <list-index>
element is used for this purpose.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[121]

Using the <list> element is similar to <set> and <bag>, but without the sort and
order-by attributes. The following code shows the Student class where its papers
property has been defined as an instance of java.util.List:

public class Student {
 private int id;
 private String firstName;
 private List papers = new ArrayList();
 //other fields and setter/gettter methods
}

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Student"
 table="STUDENT">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="firstName" column="FIRST_NAME" type="string"/>

 <list name="papers" table="STUDENT_PAPER">
 <key column="STUDENT_ID"/>
 <list-index column="POSITION"/>
 <element type="string" column="PAPER_PATH"/>
 </list>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

As you can see, we have used a nested <list-index> element to specify the column
which holds the order of each element in the List. Other elements, <key> and
<element>, have the same meanings as the <set>, <bag>, and <idbag> elements.
The following figure shows the database table structure for this type of mapping:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[122]

The <map> element
The <map> element maps an object of type java.util.Map. The Map object holds
elements as key/value pairs. Using <map> is similar to using <set>. In the following
code, our example has changed to show the mapping of a Map property:

public class Student {
 private int id;
 private String firstName;
 private Map papers = new HashMap();
 //other fields and setter/gettter methods
}

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Student"
 table="STUDENT">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="firstName" column="FIRST_NAME" type="string"/>

 <map name="papers" table="STUDENT_PAPER">
 <key column="STUDENT_ID"/>
 <map-key column="PAPER_TITLE" type="string"/>
 <element type="string" column="PAPER_PATH"/>
 </map>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

As you can see, in the mapping of a Map, we have used a <map-key> nested element
inside the <map>. The <map-key> specifies the column name in the STUDENT_PAPER
table, which holds the map's keys. We have named this column PAPER_TITLE, and it
maintains paper titles as the map's keys. This approach is realistic since no student
may write two or more papers with the same title. The following figure shows the
database table structure for the mapping of a Map:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[123]

Mapping collections with annotations
Hibernate provides a proprietary org.hibernate.annotations.
CollectionOfElements annotation to map collections which contain value-typed
elements. Let's get back to our first example, the Student class with a property of
java.util.Set. We should use the CollectionOfElements annotation as follows
to map Set:

@org.hibernate.annotations.CollectionOfElements(
 targetElement = java.lang.String.class
)
@JoinTable(
 name = "STUDENT_PAPER",
 joinColumns = @JoinColumn(name = "STUDENT_ID")
)
@Column(name = "PAPER_PATH")
private Set papers = new TreeSet();

The CollectionOfElements annotation has an optional targetElement property,
which determines the type of objects held by the collection. If generics are used with
the collection, then there is no need to use this property.

CollectionOfElements can be used with the IndexColumn annotation to map a
java.util.List:

@org.hibernate.annotations.CollectionOfElements(
 targetElement = java.lang.String.class
)
@JoinTable(
 name = "STUDENT_PAPER",
 joinColumns = @JoinColumn(name = "STUDENT_ID")
)
@org.hibernate.annotations.IndexColumn(name="POSITION")
@Column(name = "PAPER_PATH")
private List papers = new ArrayList();

If the index of elements doesn't matter, you may omit the IndexColumn annotation,
and then the list will be mapped as a bag collection.

You may also use CollectionOfElements with the MapKey annotation to map a
java.util.Map. Here is an example:

@org.hibernate.annotations.CollectionOfElements(
 targetElement = java.lang.String.class
)
@JoinTable(
 name = "STUDENT_PAPER",

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[124]

 joinColumns = @JoinColumn(name = "STUDENT_ID")
)
@org.hibernate.annotations.MapKey(
 columns = @Column(name="PAPER_TITLE")
)
@Column(name = "PAPER_PATH")
private Map papers = new HashMap();

Notice how other parts of this mapping have never changed.

Sorted sets and sorted maps
The <set> and <map> elements can come with an additional attribute called sort.
Other collection elements, such as <bag>, <idbag>, and <list>, do not provide this
attribute. The sort attribute allows us to specify whether Hibernate should sort the
collection elements retrieved from the database. If so, it determines how they should
be sorted. The possible values for this attribute are as follows:

unsorted does not impose any sort for elements.
natural indicates Hibernate should use a sorted Set or Map implementation,
SortedSet and SortedMap, to sort the set or map elements. The elements
inside a SortedSet instance are ordered according to the elements of the
compareTo() method. The elements of a SortedMap instance are ordered
according to the compareTo() method of the SortedMap keys. Note that the
elements of a SortedSet, and the keys of a SortedMap, must implement
the java.lang.Comparable interface, which causes them to have the
compareTo() method.
The name of a comparator class: you may use an implementation of the
java.util.Comparator class to define a different strategy for sorting.

The following examples show how you can specify a sorting strategy.

This example indicates that no sort operation is performed on the map elements:

<map name="papers" table="STUDENT_PAPER" sort="unsorted">
 <key column="STUDENT_ID"/>
 <map-key column="PAPER_TITLE" type="string"/>
 <element type="string" column="PAPER_PATH"/>
</map>

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[125]

This example indicates that the map elements must be sorted based on the map key,
PAPER_TITLE. Since PAPER_TITLE entries are strings, use the String.compareTo()
method to sort them:

<map name="papers" table="STUDENT_PAPER" sort="natural">
 <key column="STUDENT_ID"/>
 <map-key column="PAPER_TITLE" type="string"/>
 <element type="string" column="PAPER_PATH"/>
</map>

Finally, we may implement the java.util.Comparator interface to define a new
strategy for sorting the Map or Set elements. The following code shows a comparator
class which defines a different strategy for sorting PAPER_TITLE. This class changes
the normal sort of strings, in which letters always appear before numeric characters:

package com.packtpub.springhibernate.ch06;

import java.util.Comparator;

public class CustomStringComparator implements Comparator<String> {

 public int compare(String s1, String s2){
 if(s1.length()==0){
 return -1;
 }
 if(s2.length()==0){
 return 1;
 }
 char ch1 = s1.charAt(0);
 char ch2 = s2.charAt(0);
 if(ch1 == ch2){
 s1 = s1.substring(1, s1.length());
 s2 = s2.substring(1, s2.12 length());
 return this.compare(s1, s2);
 }else {
 return this.compare(ch1, ch2);
 }
 }

 public int compare(char ch1, char ch2){
 if(Character.isDigit(ch1)&& Character.isLetter(ch2)){
 return 1;
 } else if(Character.isLetter(ch1)&& Character.isDigit(ch2)) {
 return -1;
 }else {
 return ch1 - ch2;
 }
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[126]

To use this comparator, we only need to specify the fully qualified name of the
CustomStringComparator class as the value for the sort attribute as follows:

<map name="papers" table="STUDENT_PAPER"
 sort="com.packtpub.springhibernate.ch06.CustomStringComparator">
 <key column="STUDENT_ID"/>
 <map-key column="PAPER_TITLE" type="string"/>
 <element type="string" column="PAPER_PATH"/>
</map>

<bag>, <idbag>, and <list> cannot be sorted. The list index
specifies the elements order in the list.

A collection can be sorted or ordered with the Sort annotation, provided by the
Hibernate annotation API:

@org.hibernate.annotations.CollectionOfElements(
 targetElement = java.lang.String.class
)
@JoinTable(
 name = "STUDENT_PAPER",
 joinColumns = @JoinColumn(name = "STUDENT_ID")
)
@Column(name = "PAPER_PATH")
@org.hibernate.annotations.Sort(
 type = org.hibernate.annotations.SortType.NATURAL
)
private Set papers = new TreeSet();

The type attribute can have one of the SortType's NATURAL, UNSORTED, and
COMPARATOR values. All of the values have the same meaning as they are already
used with the <set> and <map> elements. As before, if COMPARATOR is used, you
need to introduce an implementation of the java.util.Comparator interface, as the
customized strategy for sorting the Map or Set elements is through the comparator
attribute. An example which uses CustomStringComparator, recently implemented,
is as follows:

@org.hibernate.annotations.Sort(
 type = org.hibernate.annotations.SortType.COMPARATOR,
 comparator=com.packtpub.springhibernate.ch06.CustomStringComparator
)

Other annotations remain unchanged.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[127]

Using the order-by attribute to order
collection elements
The order-by attribute can be used with <bag>, <idbag>, <list>, <set>, and <map>
to order the collection elements through an ORDER BY clause when the elements are
retrieved from the database.

For instance, we may use the order-by attribute, instead of sort, with the <map>
element to order elements based on the map's keys:

<map name="papers" table="STUDENT_PAPER" order-by="PAPER_TITLE asc">
 <key column="STUDENT_ID"/>
 <map-key column="PAPER_TITLE" type="string"/>
 <element type="string" column="PAPER_PATH" not-null="true"/>
</map>

Note that you can use any column of the collection table to order the
collection's elements.

The Hibernate annotation API provides the OrderBy annotation to determine, how
a collection should be ordered on load by the database when the objects are fetched.
The OrderBy annotation uses the clause attribute to determine the SQL order by
clause in fetching the objects. The equivalent annotation mapping for the XML
mapping definition above is as follows:

@org.hibernate.annotations.CollectionOfElements(
 targetElement = java.lang.String.class
)
@JoinTable(
 name = "STUDENT_PAPER",
 joinColumns = @JoinColumn(name = "STUDENT_ID")
)
@Column(name = "PAPER_PATH")
@org.hibernate.annotations.OrderBy(
 clause = "PAPER_TITLE asc"
)
private Set papers = new TreeSet();

The value of the clause attribute is appended to the SQL fragment generated by
Hibernate to pass to the database.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[128]

Mapping object associations
So far in this chapter, you've learned about mapping components. A component is a
property of a persistent class represented as another persistent class, which is stored
with its owner class in one table. Instead of persisting associated classes in one table,
each class may be persisted in its own table. This approach is the subject of this next
section. We'll begin by looking at different types of object associations and how they
are represented in the Java object model.

Suppose there are two persistent classes called A and B. The relationship of A and
B is called one-to-one if any instance of A is associated with only a single instance
of B, and no more. A one-to-one association is always presented as an instance of B
defined as a property of A, or vice versa.

The association is called one-to-many from A to B if any instance of A can be
associated with more than one instance of B. This relationship is established by a
property of a collection type of B instances in class A. The one-to-many relationship
from A to B is called many-to-one when going from B to A. In other words, when
more than one instance of B can be associated with one instance of A.

The final type of relationship, which is rare, is many-to-many: more than one
instance of A can be associated with more than one instance of B. In this
relationship, each instance of A holds a collection of B instances, and vice versa.

Let's see how these object relationships can be persisted with Hibernate.

The <one-to-one> element
Two persistent classes may be associated with each other in a one-to-one
relationship. A relationship is called one-to-one when each instance of a class
is associated with a single instance of another class, and vice versa. If, when you
have an instance of one class, and the other instance can be reached, then the
one-to-one relationship is called bidirectional. On the other hand, if the objects
cannot be reached from both sides, the relationship is unidirectional.

For example, consider the Phone and Student classes in the previous section. If each
student has a unique phone number, and no phone number is shared between two or
more students, the relationship is one-to-one. This is because each Student object is
associated with only one Phone object, and each Phone object is owned by only one
Student object. At the database level, a one-to-one relationship is represented using
either the same primary keys or unique foreign keys.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[129]

When an instance of one class is stored, we expect its associated object to be stored
as well. This scenario can be true for updating and removing. Note that we can
configure the cascade operation for each class and disable or enable this behavior.
Hibernate provides the <one-to-one> element to map a one-to-one relationship
between two persistent classes. We will discuss each strategy in upcoming sections.
Here is the common form of the <one-to-one> element:

<one-to-one name="propertyName"
 class="className" cascade="none|all|delete|persist|merge|
 save-update|evict|replicate|lock|refresh"
 property-ref="propertyNameFromAssociatedClass"
 constraint="true|false">

The meanings of these attributes and their possible values are as follows:

name (mandatory) refers to the name of the associated object.
class (optional) specifies the class name of the associated object. If class
is not specified, Hibernate maps this property using the reflection API, to
discover the associated object's class and find the mapping metadata for
that class. This attribute is useful when the object's class and superclass(es)
are mapped differently, and we want to map this property as one of its
superclasses, instead of as its own class.
cascade (optional) determines how changes to the parent object propagate
to the associated object when the parent is created, updated, or removed.
property-ref (optional) specifies a property of the associated object. The
value of this property establishes the relationship between two objects.
constraint specifies that a foreign key constraint links the primary key of
the associated table to the primary key of the owner table. This guarantees
that an associated row's primary key references a valid owner primary key.

The <one-to-one> element can come with other attributes, such as access and
lazy, with the same meanings as with <class>.

Using identical primary keys
The first strategy for mapping a one-to-one relationship is to use identical primary
key values for associated objects. This means each row of one table is associated with
a row in another table through the same identifier value.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[130]

The following code shows Student and Phone classes with a one-to-one relationship.
As you can see, this relationship is represented by a property of type Phone in the
Student class. This relationship is unidirectional because the Phone class does not
maintain any reference for Student:

public class Student {
 private int id;
 private Phone phone;
 //other fields and getter/setter methods
}

public class Phone {
 private int id; private String comment;
 private String number;
 //other fields and getter/setter methods
}

You can use a <one-to-one> element in the mapping definition to map this
relationship in Student.hbm.xml, as shown in the following code:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Student"
 table="STUDENT">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <one-to-one name="phone"
 class="com.packtpub.springhibernate.ch06.Phone"
 cascade="all"
 lazy="false"/>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

And here is Phone.hbm.xml:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Phone" table="PHONE">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="number" column="PHONE_NUMBER" type="string"/>
 <property name="comment" column="COMMENT" type="string"/>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[131]

The relationship is unidirectional, each Phone object can be reached from its
respective Student, but not the reverse. To change the relationship to bidirectional,
first, Phone must maintain a reference to its respective Student, and second,
the Phone mapping must include a one-to-one relationship. The following code
illustrates the changes in the Phone class:

public class Phone {
 private int id; private String comment;
 private String number;

 private Student student;
 //other fields and getter/setter methods
}

Student.hbm.xml remains unchanged, but Phone.hbm.xml changes as follows:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Phone" table="PHONE">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="number" column="PHONE_NUMBER" type="string"/>
 <property name="comment" column="COMMENT" type="string"/>

 <one-to-one name="student" property-ref="phone"
 class="com.packtpub.springhibernate.06.Student"
 cascade="all"/>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

JPA provides the OneToOne annotation for mapping a one-to-one relationship. To
map a one-to-one relationship using the identical primary keys strategy, we also
need the PrimaryKeyJoinColumn annotation. The following code shows how our
recent example is mapped through JPA annotations:

@Entity
public class Student {

 @Id
 private int id;

 @OneToOne
 @PrimaryKeyJoinColumn
 private Phone phone;

 //other fields and getter/setter methods
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[132]

If you want to make this relation bidirectional, you need to provide a property of
type Student in the Phone class, and use the OneToOne annotation with the
mappedBy, as follows:

public class Phone {

 @OneToOne(mappedBy="student")
 private Student student;

}

As you can see, the value of the mappedBy attribute is the property name, which
holds a reference of Student in the Phone class.

Foreign key one-to-one
This strategy uses a foreign key column to establish the one-to-one relationship
between two tables. One table has an extra column as a foreign key to the primary
key of the other table. To map this relationship, use a <many-to-one> element
instead of <one-to-one>, because when we say a table has a foreign key to another
table, many rows in the source table can naturally refer to one single row in the
target table. However, if the foreign key column is defined as unique, this strategy
guarantees that only a single row in the source table can be associated with a row in
the target table.

Student.hbm.xml should change as follows:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Student"
 table="STUDENT">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <many-to-one name="phone"
 class="com.packtpub.springhibernate.ch06.Phone"

 column="PHONE_ID" unique="true"/>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

And Phone.hbm.xml will change as follows:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Phone" table="PHONE">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[133]

 <property name="number" column="PHONE_NUMBER" type="string"/>
 <property name="comment" column="COMMENT" type="string"/>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

In this example, we have used the <many-to-one> element, which is discussed later
in this chapter. For now, just note that this element specifies that the STUDENT table
has a foreign key column, named PHONE_ID, to the primary key of the associated
table, PHONE.

As before, to change the relationship to bidirectional, first, Phone must maintain a
reference to its respective Student, and second, the Phone mapping must include a
one-to-one relationship:

public class Phone {
 private int id; private String comment;
 private String number;

 private Student student;
 //other fields and getter/setter methods
}
<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Phone" table="PHONE">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="number" column="PHONE_NUMBER" type="string"/>
 <property name="comment" column="COMMENT" type="string"/>

 <one-to-one name="student"
 class="com.packtpub.springhibernate.ch06.Student"
 constrained="false" property-ref="phone" />

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

As you can see, the <one-to-one> element uses two attributes: constrained
and property-ref. The property-ref element indicates the name of a property
in the Student object by which the associated Phone object is represented.
constrained="true" adds a foreign key constraint which links the primary key of
the PHONE table to the primary key of the STUDENT table. This approach guarantees
that a PHONE row's primary key always references a valid STUDENT primary key.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[134]

The OneToOne annotation can also be used to map a one-to-one relationship using
the foreign key strategy. For this purpose, you need to use JoinColumn annotation.
The JoinColumn annotation uses a name attribute which specifies the foreign key
constraint. The following shows how these annotations are used to map our simple
one-to-one relationship:

public class Student {

@OneToOne
@JoinColumn(name="PHONE_ID")
private Phone phone;

}

As with identical primary keys, to make the relation bidirectional you need to
provide a property of type Student in the Phone class, and use the OneToOne
annotation with the mappedBy, as follows.

The <many-to-one> element
The <many-to-one> element maps a many-to-one relationship. A relationship is
called many-to-one when multiple instances of a class are associated with a single
instance of another class. For example, suppose that more than one student can have
the same address because they live in the same household. Therefore, many Student
objects can be associated with one and only one Address object. This relationship is
usually carried out in the database by defining a foreign key in the many-class table
which points into the primary key of the one-class table. The common form of this
element is as follows:

<many-to-one
 name="propertyName"
 column="columnName"
 class="className"
 lazy="proxy|no-proxy|false"

 not-found="ignore|exception">
…
</many-to-one>

The meanings of these attributes and their possible values are as follows:

name (mandatory) determines the name of the property inside the many-side
class, representing the associated object (the one side).
column (optional) specifies the foreign key column in the many-side table
that points to the primary key of the one side. If this attribute is missed, the
name attribute is used as the column name.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[135]

class (optional) represents the class name of the associated object. The
default value is the property type determined by reflection.
lazy (optional) specifies whether the one-side object loads when the
many-side object is loaded. Possible values are proxy, no-proxy, and
false. The default is proxy, which tells Hibernate to load the associated
object lazily with proxy generation. no-proxy indicates that Hibernate
should use interception to load the associated object lazily. false means
Hibernate should always load the associated object with the parent.
Proxies and interceptions are discussed in Chapter 8.
not-found (optional) describes Hibernate's behavior when the associated
object (on the one side) does not exist. Hibernate either throws an exception
or ignores it.

Other attributes for this element are cascade, update, insert, and access, which
have the same meanings as with <class>.

As we saw earlier, the relationship between the Student and Address objects can
be considered a many-to-one relationship. Therefore, we will have the Student and
Address classes as follows:

public class Student {
 private int id;
 private Address address;
 //other fields and getter/setter methods
}

public class Address {
 private int id;
 private String street;
 private String city;
 private String zipCode;
 //other fields and getter/setter methods
}

The following code shows the mapping for this relation. Note that this example
shows a unidirectional many-to-one relationship. We always reach an Address from
its associated Student object, not vice versa. This relationship can be bidirectional if
the Address class has a property of collections.

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Student"
table="STUDENT">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <many-to-one name="address"

 column="ADDRESS_ID"

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[136]

 cascade="all"/>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

And this is Phone.hbm.xml:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Address"
 table="ADDRESS">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="street" column="STREET" type="string"/>
 <property name="city" column="CITY" type="string"/>
 <property name="zipCode" column="ZIP_CODE" type="string"/>
 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

We used cascade="all" above to indicate that any operation (save, update, delete,
and so on) on the many-side object (Student objects) should be propagated to the
one-side object. Note that the new ADDRESS_ID column in the STUDENT table has
been defined as a foreign key, pointing to the primary key of the ADDRESS table.

Any many-to-one relationship can be expressed with a one-to-many relationship
on the opposite side. In other words, if object A has a relationship with more than
one instance of B, then more than one instance of B may be associated with a single
instance of A. The one-to-many relationship is always presented as a collection
of many-side objects in the one-side object. Let's see how to map this type of
relationship in Hibernate.

JPA provides the ManyToOne annotation to map a many-to-one relationship.
The following code shows how this annotation is used to map our example:

public class Student {

 @ManyToOne
 @JoinColumn(name="ADDRESS_ID")
 private Address address;

}

The JoinColumn annotation specifies the foreign key column. This annotation is
optional. If it is omitted, Hibernate automatically combines the name of the property,
an underscore, and the database identifier name.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[137]

The <one-to-many> element
As with the <many-to-one> element, the <one-to-many> element maps a
many-to-one relationship, but in the opposite direction. In other words, the
<one-to-many> element maps a many-to-one relationship in which many objects
can be reached through their single associated object.

For example, the relationship between School and Student objects can be
considered one-to-many, because each School object is associated with more than
one Student object.

The one-to-many relationship is formed when an object (the one side) has a reference
to more than one other object (the many side). On the many side, each object has a
reference to only one object. Although this relationship is bidirectional, the reference
from the one side can be omitted to make it unidirectional.

To establish this relationship in the database, you need an extra column in the
many-side table which is a foreign key to the primary key in the one-side table.
The following figure shows the database view of persisting the Student and
School relationship:

The <one-to-many> element is commonly used in this form:

<one-to-many class="className" not-found="exception|ignore"/>

The meanings of these attributes and their possible values are as follows:

class (optional) specifies the class name of the many-side associated object.
not-found (optional) describes Hibernate's behavior when the many-side
associated object does not exist by loading the entity object. The possible
values are exception and ignore, meaning Hibernate must either throw
an exception or ignore it.

In the Java object model, any one-to-many relationship is represented by an array,
or by collection instances of the many-side object in the one-side object if the object
relationship is navigable from the one side to the many side.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[138]

Note that since each collection is mapped by using a <list>, <bag>, <idbag>,
<map>, or <set> element, mapping a one-to-many relationship enforces using
one of these elements.

Also, note again that each one-to-many relationship on the one side means a
many-to-one relationship on the other side. For example, the navigation from
School to Student involves a one-to-many relationship, and the opposite navigation
involves a many-to-one relationship. The application designer may choose either a
unidirectional or a bidirectional relationship for persistent objects, and does so based
on the application's requirements.

These are the Student and School classes:

public class School {
 private int id;
 private String name;
 private List students = new ArrayList();
 //other fields and getter/setter methods
}

public class Student {
 private int id;
 private String firstName;
 private String lastName;
 //other fields and getter/setter methods
}

Hibernate provides <list>, <bag>, <idbag>, <map>, or <set> elements for
mapping Java collections and maps, such as java.util.List, java.util.Map,
and java.util.Set. Since any one-to-many relationship on the one side is
represented by a Java collection or map, one of these elements is used for
mapping the one-to-many relationship. The following code shows the mapping
of the unidirectional relationship between the Student and School classes. The
relationship is navigable only from School to Student. Here is the School.hbm.xml:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.School"
table="SCHOOL">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="name" column="NAME" type="string"/>

 <bag name="students" cascade="all" >
 <key column="SCHOOL_ID"/>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[139]

 <one-to-many class="com.packtpub.springhibernate.ch06.Student"/>
 </bag>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

And the following is the Student.hbm.xml:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Student"
table="STUDENT">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="firstName" column="FIRST_NAME" type="string"/>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

Here, the <bag> element maps the java.util.List object. The nested <key>
element inside the <bag> maps the foreign key column in the many-side table
to the primary key of the one-side table. The <bag> element uses the nested
<one-to-many> element inside, which determines that the relationship is
between the School and Student classes.

To map this relationship with annotations, you can simply use OneToMany annotation
with the mappedBy attribute as follows:

public class School {

 @OneToMany(mappedBy = "school")
 private List students = new ArrayList();

}

To change this relationship to bidirectional, make these changes:

public class Student {
 private int id;
 private String firstName;
 private School school;
 //other fields and setter/getter methods
}

<hibernate-mapping>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[140]

 <class name="com.packtpub.springhibernate.ch06.Student"
table="STUDENT">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="firstName" column="FIRST_NAME" type="string"/>

 <many-to-one name="school"
 class="com.packtpub.springhibernate.ch06.School"
 column="SCHOOL_ID"
 cascade="all"/>
 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

As you can see, the Student class maintains a reference to the associated School
object. The mapping definition for the Student class now includes a <many-to-one>
element which defines the mapping of the school property in the Student class.

The ManyToOne annotation is used as follows to map the reverse side of the
one-to-many relationship:

public class Student {

 @ManyToOne
 @JoinColumn(name = "SCHOOL_ID")
 private School school;

}

Mapping a one-to-many relationship with other
collections
In all of the examples we've seen so far, the one-to-many relationship is represented
by an instance of java.util.List in the object model. This object is always mapped
with the <bag> element. However, a one-to-many relationship can be represented by
another collection, and may be mapped with another element as well. In this section,
I have shown how you can map other collections, which maintain entity types,
with Hibernate.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[141]

Mapping a set of entity types
Suppose the School class uses an instance of java.util.Set to maintain its
associated Student objects:

public class School {
 private int id;
 private String name;
 private Set students;
 //other fields and setter/gettter methods
}

You can map this with the following mapping definition:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.School"
table="SCHOOL">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="name" column="NAME" type="string"/>

 <set name="students" cascade="all" >
 <key column="SCHOOL_ID"/>
 <one-to-many class="com.packtpub.springhibernate.ch06.Student"/>
 </set>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

As you can see, we have a <set> element to map the students property of the
School class. This <set> element nests with the <key> and <one-to-many>
elements. The <key> element determines the table column that stores Student
objects, which is a foreign key to the primary key value of the associated School
object. In our example, there is a SCHOOL_ID column in the STUDENT table, which is a
foreign key to the primary key of the SCHOOL table. The <element> element specifies
the type and destination of each element in the Set, and here, it is the Student class.
To make this relationship with JPA, you can easily use the OneToMany annotation to
map the students property as the many side of the relationship, as shown in
the following:

public class School {

 @OneToMany(mappedBy = "school")
 private Set students = new HashSet();

}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[142]

Note that you do not specify the foreign key column used to persist the
relationship. This constraint is specified on the other side, where the
many-to-one relationship is mapped.

Mapping a collection of entity types with <idbag>
Consider the School class that now uses an instance of java.util.Collection to
refer to its associated Student objects:

public class School {
 private int id;
 private String name;
 private Collection students = new ArrayList();

 //other fields and setter/gettter methods
}

The mapping definition is as follows:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.School"
table="SCHOOL">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="name" column="NAME" type="string"/>

 <idbag name="students" cascade="all" order-by="firstName">

 <collection-id column="ID" type="int">

 <generator class="native"/>

 </collection-id>

 <key column="SCHOOL_ID"/>

 <one-to-many class="com.packtpub.springhibernate.ch06.Student"/>

 </idbag>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

As you can see, the <idbag> nests with three subelements: <collection-id>, <key>,
and <one-to-many>. The <collection-id> element specifies the primary key
column of the collection table, which holds the identifier value for each collection's
element and identifier generation strategy. <one-to-many> specifies the type and
destination of each element in the Collection. In our case, it's the Student class.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[143]

Mapping a list of entity types
Assume that the School class uses an instance of java.util.List to maintain its
associated Student objects:

public class School {
 private int id;
 private String name;
 private List students = new ArrayList();
 //other fields and setter/gettter methods
}

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.School"
table="SCHOOL">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="name" column="NAME" type="string"/>

 <list name="students" cascade="all" >
 <key column="SCHOOL_ID"/>
 <index column="POSITION"/>
 <one-to-many class="com.packtpub.springhibernate.ch06.Student"/>
 </list>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

Using a <list> element to map a one-to-many relationship is similar to using it for
value types, except that the <list> element uses a nested <one-to-many> element to
specify the persistent instances are held by the java.util.List instance.

Mapping a java.util.Map of entity types
The following School class uses a Map to hold the Student associated objects:

public class School {
 private int id;
 private String name;
 private Map students = new HashMap();

 //other fields and setter/gettter methods
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[144]

Here is the mapping definition for this class:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.School"
table="SCHOOL">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="name" column="NAME" type="string"/>

 <map name="students" cascade="all">
 <key column="SCHOOL_ID"/>
 <index column="SCHOOL_KEY" type="string"/>
 <one-to-many class="com.packtpub.springhibernate.ch06.Student"/>
 </map>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

Using a <map> element here is similar to using it for value types, except that the
<map> element uses a nested <one-to-many> element to specify the type of the List
elements. In our case, it's the Student class. The SCHOOL_KEY column in the STUDENT
table maintains the key of each map value. JPA provides the MapKey annotation to
provide information about the key of the map in relationships which are established
through java.util.Map. For our example, we would have the following to map
the relationship:

@MapKey(name="ID")
@OneToMany
private Map students = new HashMap();

MapKey used a name attribute which maps a property of the target entity as the key of
the map.

The <many-to-many> element
The <many-to-many> element maps a many-to-many relationship. A relationship
is called many-to-many when each instance of one class is associated with many
instances of another class, and vice versa. The following figure shows an example
of a many-to-many relationship between Student and Course objects. As you can
see in the figure, each Student object can be associated with more than one Course
object, and vice versa:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[145]

A many-to-many relationship is usually mapped by using three tables: one for each
class, and one for expressing their relationship, as shown in the following figure. The
intermediate table has two columns: one column is a foreign key to the first table's
primary key, and the other column is a foreign key to the second table's primary key:

The <many-to-many> element is used like this:

<many-to-many column="columnName"
 class="className"
 not-found="ignore|exception"
 property-ref="propertyNameFromAssociatedClass"/>

The meanings of these attributes and their possible values are as follows:

column (optional) refers to the column in the intermediate table which
maintains the associated object's identifiers.
class (mandatory) specifies the class name of the associated objects.
not-found (optional) determines Hibernate's behavior when an associated
object identifier exists in the intermediate table, but does not exist in the
mapped table. Valid values are exception and ignore, meaning Hibernate
should either throw an exception or ignore it.
property-ref (optional) is used for nonprimary-key associations. This
attribute specifies a property name of the associated object that must be used
(instead of the identifier of the associated object) to establish association.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[146]

The following code shows the Student and Course classes and their mappings:

public class Student {
 private int id;
 private String firstName;
 private List courses = new ArrayList();
 //other fields and setter/getter methods
}

public class Course {
 privae int id;
 private String name;
 //other fields and setter/getter methods
}

<!-- Student.hbm.xml -->
<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Student"
table="STUDENT">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="firstName" column="FIRST_NAME" type="string"/>

 <bag name="courses"
 cascade="all"
 table="STUDENT_COURSE"
 lazy="false">
 <key column="STUDENT_ID"/>
 <many-to-many class="com.packtpub.springhibernate.ch06.Course"
 column="COURSE_ID"/>
 </bag>

 <!-- mapping of other fields -->

 </class>
</hibernate-mapping>

<!-- Course.hbm.xml -->
<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Course"
table="COURSE">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="name" column="NAME" type="string"/>

 <!-- mapping of other fields -->

 </class>
</hibernate-mapping>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 6

[147]

JPA provides the ManyToMany annotation to map a many-to-many relationship. It's
very simple and easy to use. The following code shows how this annotation can be
used to map our example:

@ManyToMany
@JoinTable(
 name = "STUDENT_COURSE",
 joinColumns = {@JoinColumn(name = "STUDENT_ID")},
 inverseJoinColumns = {@JoinColumn(name = "COURSE_ID")}
)
private List courses = new ArrayList();

Note where the intermediate table's name and its columns names appear. This
relationship is unidirectional. However, you could make it bidirectional with the
following changes:

public class Course {
 privae int id;
 private String name;
 private List students = new ArrayList();
 //other fields and setter/getter methods
}

<!-- Course.hbm.xml -->
<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch06.Course"
table="COURSE">

 <id name="id" type="int" column="ID">
 <generator class="increment"/>
 </id>

 <property name="name" column="NAME" type="string"/>

 <bag name="students"
 cascade="all"
 table="STUDENT_COURSE"
 lazy="false">
 <key column="COURSE_ID"/>
 <many-to-many class="com.packtpub.springhibernate.ch06.Student"
 column="STUDENT_ID"/>
 </bag>

 <!-- mapping of other fields -->

 </class>
</hibernate-mapping>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

More on Mappings

[148]

To map bidirectional many-to-many relationship, you simply need to put another
ManyToMany annotation on the opposite side of the relationship, as follows:

@ManyToMany(mappedBy = "courses")
private List students = new ArrayList();

The mappedBy attribute refers to the name of property, which holds a list of courses.

Summary
In this chapter, we discussed some of the more advanced concepts behind mapping.
We started our discussion by introducing the <component> element to map a class
property which is represented as an object of the other class in a single table.

We continued with different kinds of object associations and their mapping. In
practice, there are four kinds of associations: one-to-one, one-to-many, many-to-one,
and many-to-many. For each kind of association, a corresponding element exists in
Hibernate mapping. A relationship is called bidirectional, if we can reach one side of
the association from the other side, and vice versa. In contrast, a relationship is called
unidirectional when we can navigate the relationship in one direction only.

Hibernate allows you to map collections using <list>, <bag>, <idbag>, <set>, and
<map> elements. These elements always appear in a one-to-many or a many-to-many
relationship. While <list>, <bag>, and <idbag> are used to map a collection object
of type java.util.List, <map> and <set> are used to map objects of type
java.util.Map and java.util.Set, respectively.

<list> lets you preserve the ordering of collection elements. <idbag> and <bag>
act similarly, and neither cares about the elements order. However, <idbag> uses
an extra column to enhance the performance of update and delete operations.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Types
Hibernate allows transparent persistence, which means the application is absolutely
isolated from the underlying database storage format. Three players in the Hibernate
scene implement this feature: Hibernate dialect, Hibernate types, and HQL. The
Hibernate dialect allows us to use a range of different databases, supporting
different, proprietary variants of SQL and column types. In addition, HQL allows
us to query persisted objects, regardless of their relational persisted form in
the database.

Hibernate types are a representation of databases SQL types, provide an abstraction
of the underlying database types, and prevent the application from getting involved
with the actual database column types. They allow us to develop the application
without worrying about the target database and the column types that the database
supports. Instead, we get involved with mapping Java types to Hibernate types. The
database dialect, as part of Hibernate, is responsible for transforming Java types to
SQL types, based on the target database. This gives us the flexibility to change the
database to one that may support different column types or SQL without changing
the application code.

In this chapter, we will discuss the Hibernate types. We will see how Hibernate
provides built-in types that map to common database types. We'll also see how
Hibernate allows us to implement and use custom types when these built-in types
do not satisfy the application's requirements, or when we want to change the default
behavior of a built-in type. As you will see, you can easily implement a custom-type
class and then use it in the same way as a built-in one.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Types

[150]

Built-in types
Hibernate includes a rich and powerful range of built-in types. These types satisfy
most needs of a typical application, providing a bridge between basic Java types and
common SQL types. Java types mapped with these types range from basic, simple
types, such as long and int, to large and complex types, such as Blob and Clob. The
following table categorizes Hibernate built-in types with corresponding Java and
SQL types:

Java Type Hibernate Type Name SQL Type
Primitives
Boolean or boolean boolean BIT

true_false CHAR(1)(‘T'or'F')

yes_no CHAR(1)(‘Y'or'N')

Byte or byte byte TINYINT

char or Character character CHAR

double or Double double DOUBLE

float or float float FLOAT

int or Integer integer INTEGER

long or Long long BIGINT

short or Short short SMALLINT

String
java.lang.String string VARCHAR

character CHAR(1)

text CLOB

Arbitrary Precision Numeric
java.math.BigDecimal big_decimal NUMERIC

Byte Array
byte[] or Byte[] binary VARBINARY

Time and Date
java.util.Date date DATE

time TIME

timestamp TIMESTAMP

java.util.Calendar calendar TIMESTAMP

calendar_date DATE

java.sql.Date date DATE

java.sql.Time time TIME

java.sql.Timestamp timestamp TIMESTAMP

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 7

[151]

Java Type Hibernate Type Name SQL Type
Localization
java.util.Locale locale VARCHAR

java.util.TimeZone timezone

java.util.Currency currency

Class Names
java.lang.Class class VARCHAR

Any Serializable Object
java.io.Serializable Serializable VARBINARY

JDBC Large Objects
java.sql.Blob blob BLOB

java.sql.Clob clob CLOB

Although the SQL types specified in the table above are standard SQL types, your
database may support somewhat different SQL types. Refer to your database
documentation to find out which types you may use instead of the standard SQL
types shown in the table above.

Don't worry about the SQL types that your database supports. The SQL
dialect and JDBC driver are always responsible for transforming the Java
type values to appropriate SQL type representations.

The type attribute specifies Hibernate types in mapping definitions. This helps
Hibernate to create an appropriate SQL statement when the class property is stored,
updated, or retrieved from its respective column.

The type attribute may appear in different places in a mapping file. You may use it
with the <id>, <property>, <discriminator>, <index>, and <element> elements.
Here is a sample mapping file with some type attributes in different locations:

<hibernate-mapping>
 <class name="Person" table="PERSON" discriminator-value="PE">

 <id name="id" column="ID" type="long">
 <generator class="native"/>
 </id>

 <discriminator column="PERSON_TYPE" type="string"/>

 <property name="birthdate" column="BIRTHDATE" type="date"/>

 <list name="papers" table="STUDENT_PAPER">

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Types

[152]

 <key column="STUDENT_ID"/>
 <list-index column="POSITION"/>
 <element column="PAPER_PATH" type="string"/>
 </list>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

If a property is mapped without the type attribute, Hibernate uses the reflection
API to find the actual type of that property and uses the corresponding Hibernate
type for it. However, you should specify the type attribute if that property can be
mapped with more than one Hibernate type. For example, if a property is of type
java.lang.String, and its mapping definition does not include the type attribute,
Hibernate will use the reflection API and select the type string for it. This means
you need to explicitly define the Hibernate type for a Java String if you want to
map the String with a character or text Hibernate type.

Custom types
For most mappings, Hibernate's built-in types are enough. However, in some
situations, you may need to define a custom type. These situations generally happen
when we want Hibernate to treat basic Java types or persistent classes differently
than it normally would. Here are some situations where you may need to define
and use a custom type:

Storing a particular Java type in a column with a different SQL type
than Hibernate normally uses: For example, you might want to store a
java.util.Date object in a column of type VARCHAR, or a String object
in a DATE column.
Mapping a value type: Value types, the dependent persistent classes that do
not have their own identifiers, can be mapped with custom types. This means
you can treat value types similarly to primitive types and map them with
the <property> element, instead of <component>. For example, the Phone
class in the previous chapter was mapped with <component>. You could
implement custom type and use it to map Phone objects with <property>.
Splitting up a single property value and storing the result in more than
one database column: For example, assume that any phone number is
split-up into four components—representing country code, area code,
exchange, and line number, stored in four columns of the database. We may
take this approach to provide a search facility for countries, areas, exchanges,
and line numbers. If the phone numbers are represented as long numbers
populated from four columns, we need to define a custom type and tell
Hibernate how to assemble the number.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 7

[153]

Storing more than one property in a single column: For example, in
Chapter 6, the papers property of the Student class was represented as
an object of java.util.List and held the file paths of all of the papers
the student has written. You can define a custom type to persist all of the
papers file paths as a semicolon-separated string in a single column.
Using an application-specific class as an identifier for the persistent
class: For example, suppose you want to use the application-specific
class CustomIdentifier, instead of the int, long, String, and so on,
for persistent class identifiers. In this case, you also need to implement
an IdentifierGenerator to tell Hibernate how to create new identifier
values for non-persisted objects.

In practice, other use cases also need custom types for implementation and use. In
all of these situations, you must tell Hibernate how to map a particular Java type
to a database representation. You do this by implementing one of the interfaces
which Hibernate provides for this purpose. The basic and most commonly used of
these interfaces include org.hibernate.usertype.UserType and org.hibernate.
usertype.CompositeUserType. Let's look at these in detail, discussing their
differences, and how to use them.

UserType
UserType is the most commonly used Hibernate extension type. This interface
exposes basic methods for defining a custom type. Here, we introduce a simple case
and show how a custom type can provide a convenient mapping definition for it.

Suppose that the history of any school is represented by an individual class,
History. Obviously, the History class is a value type, because no other persistent
class uses the History class for its own use. This means that all History objects
depend on School objects. Moreover, each school has its own history, and history
is never shared between schools. Here is the School class:

package com.packtpub.springhibernate.ch07;

import java.io.Serializable;

public class School implements Serializable {

 private long id;
 private History history ;
 //other fields

 //setter and getter methods
 public long getId() {
 return id;
 }

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Types

[154]

 public void setId(long id) {
 this.id = id;
 }

 public History getHistory() {
 return history;
 }

 public void setHistory(History history) {
 this.history = history;
 }

 //other setters and getters
}

And this is the History class:

package com.packtpub.springhibernate.ch07;

import java.io.Serializable;
import java.util.Date;

public class History implements Serializable {
 long initialCapacity;
 Date establishmentDate;

 public long getInitialCapacity() {
 return initialCapacity;
 }

 public void setInitialCapacity(long initialCapacity) {
 this.initialCapacity = initialCapacity;
 }

 public Date getEstablishmentDate() {
 return establishmentDate;
 }

 public void setEstablishmentDate(Date establishmentDate) {
 this.establishmentDate = establishmentDate;
 }
}

Note that I have intentionally omitted all irrelevant fields of the
two classes to keep the example simple.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 7

[155]

Our strategy in mapping a value type so far is to use one table for persisting both the
persistent class and its associated value types. Based on this strategy, we need to use
a SCHOOL table, which stores all of the School and History properties, and then map
both School and its History class into that table through the <component> element
in the mapping file. The mapping definition for School and its associated History
class is as follows:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch07.School"
table="SCHOOL">
 <id name="id" type="long" column="id">
 <generator class="increment"/>
 </id>
 <component name="history"
 class="com.packtpub.springhibernate.ch07.History">
 <property name="initialCapacity" column="INITIAL_CAPACITY"
 type="long"/>
 <property name="establishmentDate" column="ESTABLISHMENT_DATE"
 type="date"/>
 </component>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

As an alternative approach, you can map the History class with a custom type. You
do this by implementing a custom type, HistoryType, which defines how to map
History objects to the target table. Actually, Hibernate does not persist a custom
type. Instead, the custom type gives Hibernate information about how to persist a
value type in the database. Let's implement a basic custom type by implementing
the UserType interface. In the next section of this chapter, we'll discuss how to
map History with an implementation of another Hibernate custom type interface,
CompositeUserType.

The following code shows the HistoryType class that implements the UserType
interface, providing a custom type for the History class:

package com.packtpub.springhibernate.ch07;

import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Types;
import java.io.Serializable;
import java.util.Date;

import org.hibernate.Hibernate;
import org.hibernate.HibernateException;
import org.hibernate.usertype.UserType;

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Types

[156]

public class HistoryType implements UserType {

 private int[] types = { Types.BIGINT, Types.DATE};

 public int[] sqlTypes() {
 return types;
 }

 public Class returnedClass() {
 return History.class;
 }

 public boolean equals(Object a, Object b) throws HibernateException
{
 return (a == b) ||
 ((a != null) && (b != null) && (a.equals(b)));
 }

 public int hashCode(Object o) throws HibernateException {
 return o.hashCode();
 }

 public Object nullSafeGet(ResultSet rs, String[] names, Object owner)
 throws HibernateException, SQLException {
 Long initialCapacity = rs.getLong(names[0]);
 // check if the last column read is null
 if (rs.wasNull()) return null;
 Date establishmentDate = rs.getDate(names[1]);
 History history = new History() ;
 history.setInitialCapacity(initialCapacity.longValue());
 history.setEstablishmentDate(establishmentDate);
 return history;
 }

 public void nullSafeSet(PreparedStatement ps, Object value,
 int index) throws HibernateException, SQLException {

 if(value==null){
 ps.setNull(index, Hibernate.LONG.sqlType());
 ps.setNull(index+1, Hibernate.DATE.sqlType());
 }else{
 History history = (History) value;
 long initialCapacity = history.getInitialCapacity();
 Date establishmentDate = history.getEstablishmentDate();
 Hibernate.LONG.nullSafeSet(ps, new Long(initialCapacity),
 index);

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 7

[157]

 Hibernate.DATE.nullSafeSet(ps, establishmentDate, index + 1);
 }
 }

 public Object deepCopy(Object o) throws HibernateException {
 if (o == null) return null;
 History origHistory = (History) o;
 History newHistory = new History();

 newHistory.setInitialCapacity(origHistory.getInitialCapacity());
 newHistory.setEstablishmentDate(origHistory.
 getEstablishmentDate());
 return newHistory;
 }

 public boolean isMutable() {
 return true;
 }

 public Serializable disassemble(Object value) throws
 HibernateException {
 return (Serializable) value;
 }

 public Object assemble(Serializable cached, Object owner)
 throws HibernateException {
 return cached;
 }

 public Object replace(Object original, Object target, Object owner)
 throws HibernateException {
 return original;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Types

[158]

The following table provides a short description for the methods in the
UserType interface:

Method Description
public int[] sqlTypes() This method returns an array of int, telling

Hibernate which SQL column types to use for
persisting the entity properties. You may use
the SQL types defined as constants in the java.
sql.Types class directly, or you may call the
sqlType() method of Hibernate types defined
as constants in the org.hibernate.Hibernate
class. For example, in HistoryType, recently
discussed, you may alternatively define the types
as follows:
private int[] types = {Hibernate.
BIG_INTEGER.sqlType(),Hibernate.DATE.
sqlType()};

Note that you should specify the SQL types in
the order in which they appear in the subsequent
methods.

public Class
returnedClass()

This method specifies which Java value type is
mapped by this custom type.

public boolean isMutable() This method specifies whether the value type
is mutable. Since immutable objects cannot be
updated or deleted by the application, defining the
value type as immutable allows Hibernate to do
some minor performance optimization.

public Object
deepCopy(Object value)

This method creates a copy of the value type if
the value type is mutable. Otherwise, it returns
the current instance. Note that when you create a
copy of an object, you should also copy the object
associations and collections.

public Serializable
disassemble(Object value)

Hibernate may cache any value-type instance in
its second-level cache. For this purpose, Hibernate
calls this method to convert the value-type instance
to the serialized binary form. Return the current
instance if the value type implements the java.
io.Serializable interface, otherwise, convert
it to a Serializable object. Chapter 12 discusses
Hibernate cache services and strategies.

public Object
assemble(Serializable
cached, Object owner)

Hibernate calls this method when the instance is
fetched from the second-level cache and converted
back from binary serialized to the object form.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 7

[159]

Method Description
public Object
replace(Object original,
Object target, Object
owner)

Assume that the application maintains an instance
of the value type that its associated session has
already closed. As you will see in Chapter 8, such
objects are not tracked and managed by Hibernate,
so they are called detached. Hibernate lets you
merge the detached object with a session-managed
persistent object through the session's merge()
method. Hibernate calls the replace() method
when two instances, detached and session-
managed, are merged. The first and second
arguments of this method are value-type instances
associated with a detached and session-managed
persistent object, respectively. The third argument
represents the owner object, the persistent object
that owns the original value type: School in our
case. This method replaces the existing (target)
value in the persistent object we are merging,
with a new (original) value from the detached
persistent object we are merging. For immutable
objects or null values, return the first argument. For
mutable objects, return at least a copy of the first
argument through the deepCopy() method. We
will discuss the merge operation in Chapter 8.

public Object
nullSafeGet(ResultSet
resultSet, String[] names,
Object owner)

This method constructs the value-type instance,
when the instance is retrieved from the database.
resultset is the JDBC ResultSet object
containing the instance values, names is an array
of the column names queried, and owner is
the persistent object associated with the value-
type instance. Note that you should handle the
possibility of null values.

public void nullSafeSet
(PreparedStatement
statement, Object value,
int index)

This method is called when the value-type instance
is written to a prepared statement to be stored or
updated in the database. Handle the possibility
of null values. A multi-column type should be
written to parameters starting from index.

public boolean
equals(Object x, Object y)

This method compares two instances of the value
type mapped by this custom type to check whether
they are equal.

public int hashCode(
Object x)

This method returns a hashcode for the instance,
consistent with persistence equality.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Types

[160]

In some of the methods shown in the table above, the owner object is passed as an
argument to the method. You can use this object if you need the other properties of
the value-type instance. For example, you can access a property of the owner if you
need it to calculate the value for a value-type property.

Serializing and caching issue
If the value type, in our case History, does not implement the
java.io.Serializable interface, then its respective custom type
is responsible for properly serializing or deserializing the value type.
Otherwise, the value-type instances cannot be cached by the Hibernate
second-level cache service.

To use the defined custom type, you need to edit the mapping file as shown below:

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch07.School"
 table="SCHOOL">
 <id name="id" type="long" column="id">
 <generator class="increment"/>
 </id>

 <property name="history"

 type="com.packtpub.springhibernate.ch07.
 HistoryType">

 <column="INITIAL_CAPACITY" type="long"/>

 <column="ESTABLISHMENT_DATE" type="date"/>

 </property>

 <!-- mapping of other fields -->
 </class>
</hibernate-mapping>

Note that you should specify the columns in order, corresponding to the order
of types returned by the getTypes() method and the index of the values the
nullSafeGet() and nullSafeSet() handle.

So far, all we have done is implemented a custom type in the simplest form. The
implemented custom type only transforms the value-type instances to the database
columns and vice versa. A custom type may be more complicated than we have
seen so far, and can do much more sophisticated things. The advantage of this
implemented custom type is obvious: we can define our own strategy for mapping
value types. For instance, a property of the value type can be stored in more than one
column, or more than one property can be stored in a single column.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 7

[161]

The main shortcoming of this approach is that, we have hidden the value-type
properties from Hibernate. Therefore, Hibernate does not know anything about
the properties inside the value type, or how to query persistent objects based on
their associated value types as problem constraints are involved. Let's look at
CompositeUserType and how it can solve this problem.

CompositeUserType
Another way to define a custom type is to use the CompositeUserType interface.
This type is similar to UserType, but with more methods to expose the internals of
your value-type class to Hibernate. CompositeUserType is useful when application
query expressions include constraints on value-type properties. If you want to
query the persistent objects with constraints on their associated value types, map
the associated value types with CompositeUserType. The following code shows the
CompositeHistoryType implementation for History:

package com.packtpub.springhibernate.ch07;

import org.hibernate.usertype.CompositeUserType;
import org.hibernate.type.Type;
import org.hibernate.HibernateException;
import org.hibernate.Hibernate;
import org.hibernate.engine.SessionImplementor;

import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.io.Serializable;
import java.util.Date;

public class CompositeHistoryType implements CompositeUserType {

 private String[] propertyNames = {"initialCapacity",
"establishmentDate"};

 private Type[] propertyTypes = {Hibernate.LONG, Hibernate.DATE};

 public String[] getPropertyNames() {
 return propertyNames;
 }

 public Type[] getPropertyTypes() {
 return propertyTypes;
 }
 public Object getPropertyValue(Object component, int property) {
 History history = (History) component;
 switch (property) {
 case 0:
 return new Long(history.getInitialCapacity());

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Types

[162]

 case 1:
 return history.getEstablishmentDate();
 }
 throw new IllegalArgumentException(property +
 " is an invalid property index for class type " +
 component.getClass().getName());
 }

 public void setPropertyValue(Object component, int property,
 Object value) {
 History history = (History) component;
 switch (property) {
 case 0:
 history.setInitialCapacity(((Long) value).longValue());
 case 1:
 history.setEstablishmentDate((Date) value);
 default:
 throw new IllegalArgumentException(property +
 " is an invalid property index for class type " +
 component.getClass().getName());
 }

 }

 public Class returnedClass() {
 return History.class;
 }

 public boolean equals(Object o1, Object o2) throws
HibernateException {
 if (o1 == o2) return true;
 if (o1 == null || o2 == null) return false;
 return o1.equals(o2);
 }

 public int hashCode(Object o) throws HibernateException {
 return o.hashCode();
 }

 public Object assemble(Serializable cached,
 SessionImplementor session, Object owner)
 throws HibernateException {
 return deepCopy(cached);
 }

 public Object replace(Object original, Object target,
 SessionImplementor sessionImplementor, Object owner)
 throws HibernateException {

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 7

[163]

 return original;
 }

 public Serializable disassemble(Object value,
 SessionImplementor session)
 throws HibernateException {
 return (Serializable) deepCopy(value);
 }

 public Object nullSafeGet(ResultSet rs, String[] names,
 SessionImplementor session, Object o)
 throws HibernateException, SQLException {
 long initialCapacity = rs.getLong(names[0]);
 java.util.Date establishmentDate = rs.getDate(names[1]);
 return new History(initialCapacity, establishmentDate);
 }

 public void nullSafeSet(PreparedStatement ps,
 Object value, int index, SessionImplementor session)
 throws HibernateException, SQLException {
 if (value == null) {
 ps.setNull(index, Hibernate.LONG.sqlType());
 ps.setNull(index + 1, Hibernate.DATE.sqlType());
 } else {
 History history = (History) value;
 long l = history.getEstablishmentDate().getTime();
 ps.setLong(index, history.getInitialCapacity());
 ps.setDate(index + 1, new java.sql.Date(l));
 }
 }

 public Object deepCopy(Object value) throws HibernateException {
 if (value == null) return null;
 History origHistory = (History) value;
 History newHistory = new History();

 newHistory.setInitialCapacity(origHistory.getInitialCapacity());
 newHistory.setEstablishmentDate(origHistory.
getEstablishmentDate());
 return newHistory;
 }

 public boolean isMutable() {
 return true;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Types

[164]

As you can see, this interface exposes some extra methods not seen in UserType. The
following table shows the functionality of these methods:

Method Description
public String[]
getPropertyNames()

This method returns the names of
the value type's properties that may
appear in the query constraints. In the
example shown in the code above, we
have used both the initialCapacity
and establishmentDate properties,
meaning the application can query
the persistent objects based on these
property values.

public Type[] getPropertyTypes() This method returns the corresponding
types of the properties specified by
the getPropertyNames() method.
Each returned Type in the array
corresponds to a property name with
the same index in the array returned
by getPropertyNames(). Each type
is expressed as an instance of the org.
hibernate.type.Type interface,
defined as a static member in the org.
hibernate.Hibernate class, or
a custom type implemented by the
developer.

public Object
getPropertyValue(Object
component, int property)

This method returns a property's value. It
takes two arguments. The first argument
is the value-type instance that holds the
property value we want to fetch. The
second argument specifies the index of
the property, based on the property name
returned by getPropertyNames().

public void
setPropertyValue(Object
component, int property, Object
value)

Hibernate uses this method to assign
a value to any property of the value-
type instance. This method takes three
arguments. The first argument refers to the
value-type instance, the second specifies
the index of the property based on position
of the property in the array returned by
getPropertyNames(), and the third is
the value assigned to the property.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 7

[165]

Using this custom type is same as using UserType, except that you need to specify
the CompositeHistoryType instead of HistoryType as follows:

<property name="history"
 type="com.packtpub.springhibernate.ch07.
CompositeHistoryType">
 <column="INITIAL_CAPACITY" type="long"/>
 <column="ESTABLISHMENT_DATE" type="date"/>
</property>

As mentioned earlier, this custom type provides an ability to query on properties of
the History type. As you will see in Chapter 9, HQL is one approach provided by
Hibernate to query the persistent object. For instance, suppose we are interested in
schools established before 1980. The following code shows querying these objects
with HQL, a Hibernate-specific query language that works with objects:

Calendar c = Calendar.getInstance();
c.set(Calendar.YEAR, 1980);
Query q = session.createQuery(
"select s from School s where s.history.establishmentDate < :edate"
).setParameter("edate", new Date(c.getTimeInMillis()));

All we have done in this snippet is created a Query object with an HQL expression
indicating all School objects with establishment date before 1980. Note that
HistoryCompositeType provides the ability to query the School object with criteria
applied to History objects. (Don't worry about this for now since upcoming chapters
cover it in detail.)

The only advantage of CompositeUserType over UserType is that
CompositeUserType exposes the value-type properties for Hibernate. Therefore,
it lets you query persistent instances based on values of their associated
value-type instances.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Types

[166]

Summary
In this chapter, we discussed Hibernate types, which define the mapping of each Java
type to an SQL type. It is the responsibility of the Hibernate dialect and the JDBC
driver to convert the Java types to the actual target SQL types. This means a Java
type may be transformed to different SQL types when different databases are used.

Although Hibernate provides a rich set of data types, called built-in types, some
situations require the definition of a new type. One such situation occurs when you
want to change Hibernate's default behavior for mapping a Java type to an SQL
type. Another situation is when you want to split up a class property to a set of table
columns, or merge a set of properties to a table column.

Built-in types include primitive, string, byte array, time, localization, serializable,
and JDBC large types.

Hibernate provides several interfaces for implementation by custom types. The
most commonly used interfaces are org.hibernate.usertype.UserType and
org.hibernate.usertype.CompositeUserType. The basic extension point is
UserType. It allows us to map a value-type, but hides the value-type properties
from Hibernate, so it does not provide the application with the ability to query
value types. In contrast, CompositeUserType exposes the value-type properties
to Hibernate, and allows Hibernate to query the value-types.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence
Behavior

After you've configured Hibernate, it is ready to be used to persist application
objects. An API, called the Session API, is responsible for persistence in Hibernate.
This chapter discusses the life cycle of persistent objects in the application's lifetime:
the states persistent objects go through with respect to persistence. Then, we'll delve
into basic persistence operations, which trigger changes to the objects' state provided
by the Session API. Finally, we'll look at some hot topics in object persistence,
mainly, cascading operation and lazy loading.

The life cycle of persistent objects
Persistent classes follow the simple POJO rules without calling any Hibernate APIs.
In other words, no persistent class is aware of its own persistence capability. This is
why Hibernate is called a transparent persistence provider. Transparent persistence
allows us to develop persistent classes regardless of the underlying persistence
technology, whether it be Hibernate or another solution. Each POJO object can be
stored by Hibernate if it meets these conditions:

Its fields are storable in the database.
There is a table in the database to store the object.
There is a mapping definition that determines how to map each field of the
object to a table column.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[168]

To persist objects, the application must call Hibernate through its interfaces, usually
Session instances. The persistent objects that are passed and given back through
sessions have these states in their life cycles:

Transient
Persistent
Detached
Removed

Let's look at each of these states.

Transient objects
Transient refers to persistent objects, which are not yet been persisted, and are not
associated with any table's row in the database. These objects are not stored until
they are explicitly stored by the issuance of a persistence request to Hibernate.
Moreover, Hibernate considers transient objects in a nontransactional context:
Hibernate does not monitor them for any modification, so there is no roll-back
mechanism for them. Unless Hibernate is asked to persist these objects, Hibernate
does not care about them, whether they are created, modified, or removed. When the
application issues a persistence request for a transient object, Hibernate assigns an
identifier value to the object and stores it in the database. The object is then moved to
the persistent state until the session is closed, and to the detached state thereafter.

Persistent objects
Transient objects are moved to Persistent when they are stored in the database.
Persistent refers to objects that have already been persisted. They have a database
representation with appropriate primary-key values and are associated with valid
Session objects. Until the associated sessions are closed by invoking the close()
method, Hibernate caches these objects, tracks the changes, and keeps the database
representation up-to-date as transactions are committed. Moving to the detached
state is transparent, meaning no method is called for transition. Invoking the close()
method of the associated session moves the persistent object to the detached state.

Detached objects
Detached objects, like persistent objects, have already been persisted, but their
associated sessions have been closed. Hibernate does not care about them. It neither
caches them nor detects their modifications to keep the database representation
up-to-date. When reattached to a valid session object, these objects are moved to
the persistent state.

•
•
•
•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[169]

Removed objects
Removed refers to persistent objects that are arranged by the Session object to be
removed from the database. The removed objects are removed from the database
and moved to the transient state as soon as the session's associated transaction
commits. This may be done either explicitly, through invoking a delete operation for
those objects, or implicitly, through invoking a delete operation for associated objects
when the persistent objects have been mapped with cascading delete. Removed
objects are erased from the database as soon as the session's associated transaction
is complete, or during the explicit/implicit flushing of the session. They are then
moved to the transient state.

Persistence with Hibernate
Hibernate's persistence service is exposed through different interfaces, including
Session, Query, Criteria, and Transaction. Among these, the Session interface
has a crucial role, since any Hibernate interaction involves at least a Session object.

Session objects perform basic persistence operations. These include storing a
newly instantiated object and loading, updating, and deleting an already persisted
object. Session objects provide a transaction handler to perform a set of persistence
operations as a unit of work. Additionally, a Session object provides a simple cache
for the objects loaded, stored, or updated through it.

The Session API is generally used for the following purposes:

Performing basic CRUD operations: Performing the basic CRUD operations,
such as save, load, update, and delete. These operations, which are exposed
as the save(), persist(), get(), load(), update(), and saveOrUpdate()
methods on the Session object, are the subject of this chapter.
Managing transactions: Demarcating transactions through the
beginTransaction(), commit(), and rollback() methods. These
transactions are discussed in Chapter 12.
Working with filters: Applying, enabling, and disabling filters on the
data returned by executing queries. This is done by the createFilter(),
enableFilter(), and disableFilter() methods, which are explained in
the Appendix.
Creating queries: Creating queries expressed in the Criteria API, or in HQL,
through the createQuery(), createSQLQuery(), createNamedQuery(), and
createCriteria() methods. Chapter 9 discusses these methods.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[170]

Working with Hibernate resources (Connection, SessionFactory,
Transaction): Accessing the resources that the session uses behind
the scenes, including database Connection and Transaction, and the
SessionFactory object to which the session belongs. This is done through
the connection(), isOpen(), isConnected(), close(), disconnect(),
reconnect(), getTransaction(), and getSessionFactory() methods,
which are discussed in this chapter.

This chapter discusses the basic CRUD operations provided by the Session API.
Other operations, such as querying objects, with other Hibernate interfaces, such
as Transaction, Query, and Criteria, are covered in subsequent chapters.

The process of persistence
Any Hibernate interaction involves a resource factory, org.hibernate.
SessionFactory, which is used to create a single-threaded resource, org.
hibernate.Session, for each sequence of operations. The Session and
SessionFactory objects are roughly analogous to javax.sql.DataSource
and java.sql.Connection objects, respectively, in the case of JDBC.

The Hibernate interaction is started by configuring a SessionFactory object.
This object wraps all connection information, and acts as a factory for Session.
Since SessionFactory is a costly object, the application should use only one
instance of SessionFactory for each database it uses. The application then obtains
Session instances from the SessionFactory to perform operations. Regarding
this, I introduced the HibernateHelper class in Chapter 4, which configures
SessionFactory and provides Session instances. Using this class, any
Hibernate interaction can be summarized as follows:

Session session = HibernateHelper.getSession();
Transaction tx = session.beginTransaction();
//perform persistence operation(s)
tx.commit();
session.close();

In the first line, a Session object is obtained. This object may be obtained through
dealing with SessionFactory directly, or by using a utility class such as the
HibernateHelper class. Additionally, as you will see in later chapters, Spring
may be configured and set up to create a SessionFactory and provide Session.

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[171]

The next line starts a Hibernate transaction. Each transaction is applied to a sequence
of operations, which should be treated as an atomic operation. This means that
the operations included in the transaction must all be performed successfully, or
otherwise, all will fail. Since database operations are critical processes inside the
application, they must be performed inside a transaction. When you are working
with Hibernate, you may use the Hibernate API, or Spring, to demarcate transaction
boundaries and manage transaction performance. As you will see, using Spring's
declarative approach is highly recommended. For now, we will use the Hibernate
API to demarcate transactions using the beginTransaction() and commit()
methods of Session.

You are not obliged to manage transactions if your application does
not have this requirement. In that case, you can set the auto-commit
property of Hibernate to true, or always invoke the flush() method
of Session to synchronize the database only for writing operations
such as save, update, and delete. The flush() method flushes the
session, and consequently commits all of the object modifications
managed by the session.

Don't worry about transaction management with Hibernate here as
Chapter 9 discusses it fully.

When the transaction starts, you are ready to perform your desired persistent
operations. This is shown with the commented line in the preceding code.

The next line shows how the transaction is committed through the Transaction
instance's commit() method. This flushes the session and synchronizes the database
representation with the application's objects.

After everything is finished, the session instance may be closed by invoking its
close() method. This closes the underlying database connection with which
the session is associated, and releases other resources, such as the cache. Note
that you cannot use the session instance after it has been closed. If you try, a
HibernateException is thrown. Use the isOpen() of Session method to
check whether the session is open or not.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[172]

To use Hibernate with JPA, similar objects to the native Hibernate API are
involved. javax.persistence.EntityManagerFactory, javax.persistence.
EntityManager, and javax.persistence.EntityTransaction are respectively
similar to SessionFactory, Session, and Transaction, which were recently
discussed. Therefore, to interact with Hibernate through JPA, we will use code
similar to the following:

EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("instituteWebApp");
EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();
//perform persistence operation(s)
tx.commit();
em.close();

Similar to SessionFactory, only one single EntityManagerFactory object is
needed for each database used throughout the application. The first line of the code
above does this. The next lines of the code should be done for each interaction with
Hibernate. The unit of work is marked with begin(), commit(), and rollback()
methods of the EntityTransaction object.

Using this style of code to manage transactions is only applicable for local
transaction. As you will see in the next chapters, local transactions are a kind of
transactions which are involved with only a single datasource. It is also possible
to manage multiple-datasource transactions, but of course in a managed JEE
environment. Discussing this type of transaction management is out of this
book's scope.

Storing objects
When a persistent object is instantiated in memory, it is in the transient state. So
until the application saves the object by explicitly invoking the save() method of a
valid Hibernate session, the object is not persisted. A Session object is called valid,
if it has not been closed by calling its close() method. The saving process can be as
simple as follows:

Student std = … //std is a transient object
Session session = HibernateHelper.getSession();
Transaction tx = session.beginTransaction();
session.save(std);

tx.commit();
session.close();

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[173]

The save() method associates the transient object with the current session and
moves it to persistent state, so that the session tracks the object changes. The object
is inserted into the database when the transaction is committed, or when the session
is flushed. The object remains persistent while the session is open. As soon as the
session is closed, the persistent object is moved to the detached state. After that
point, the session does not track the object changes.

When you save an object, Hibernate uses an INSERT INTO SQL statement
to synchronize that object with the database. If the persistent object
changes after a save() or flush() method is invoked (and, of course,
before the transaction is committed or the session is closed), Hibernate
uses additional SQL UPDATE statement(s), besides the already prepared
INSERT INTO statement, to synchronize the session with the database.
Regarding performance optimization, call the save() or flush()
method whenever the object is ready to be stored and no additional
changes are applicable.

The Session API provides a variety set of save() methods for this purpose:

public Serializable save(Object obj) throws HibernateException
public void save(Object obj, Serializable id) throws
HibernateException
public Serializable save(String className,Object obj) throws
HibernateException

obj is the transient object we want to save. This object cannot be null. In the first
save() method, Hibernate uses the reflection API to find the object's class, and then
uses its already defined mapping to make the object persist. The obj is saved, and
its assigned identifier value is returned as a Serializable object. The application
can use the returned identifier value to look up the Session object for accessing the
persistent object.

The second save() method takes an Object and a Serializable instance as
arguments, representing the object being stored and the identifier value to be
assigned to the object. This method is useful when the application, rather than
Hibernate, generates identifier values.

The third save() method takes a String and an Object instance, which represent
the classname and the object being stored, respectively. Hibernate uses the classname
to find the object mapping. This method also returns the assigned identifier value as
a Serializable instance.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[174]

If you don't know whether the object's state is transient or detached, you can use the
following method as an alternative to save():

public void saveOrUpdate(Object obj) throws HibernateException

When you use this method, Hibernate checks the object identifier to determine
whether the object is transient, and therefore does not need to be saved or updated.
Note that an object is in the transient state when its identifier has the unsaved
value, defined in the mapping file through the unsaved-value attribute, similar
to the following:

<id name="id" type="long" column="id" unsaved-value="0">
 <generator class="increment"/>
</id>

See Chapter 5 for more information about the unsaved-value attribute.

With JPA, you can use the EntityManager's persist() method to make a
transient object persistent. Therefore, we have the code like the following to
save a transient object:

Student std = … //std is a transient object
EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();
em.persist(std);

tx.commit();
em.close();

Unlike Session's save(), the EntityManager's persist() method here does not
return the object identifier.

Object equality and identity
When an object stored in the database is detached, its corresponding table row is
updated. If the object is transient, a new row is inserted. Now, if you load this object
by the same session that was recently used, Hibernate provides the same reference
to the object. As the result, you can use the == operator to compare persistent
objects that are managed in the same session. However, if the persistent objects
are associated with different sessions, the == operator will not work correctly. To
compare persistent objects, you can implement the equals() method in persistent
classes. You can find an example of the equals() implementation in Chapter 5.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[175]

Loading objects
Hibernate provides several load() and get() methods through Session, for
loading persistent objects. The required data for loading any persistent object is
the identifier, which must be Serializable. Here is an example:

Session session = HibernateHelper.getSession();
Transaction tx = session.beginTransaction();
Student std = (Student) session.load(Student.class, 1);
tx.commit();
session.close();

This example retrieves a Student object with identifier 1. Note that in this code,
we have started and committed the transaction. This is not necessary for retrieving
a persistent object. However, it is recommended because it allows us to insert or
remove any other persistence operation before or after loading the object.

We can also use the get() method as an alternative to the load() method:

Student std = (Student) session.get(Student.class, 1);

However, the get() and load() methods work in different ways. If no object
with the given identifier exists in the database, get() returns null, but the load()
method throws ObjectNotFoundException. Moreover, the get() method always
hits the database and fetches a fresh object, whereas load() returns an initialized
object if the object has already been fetched and is cached by the current session,
otherwise a proxy is returned. A proxy is an object that simulates the real instance
without having real values. However, the real values may be loaded from the
database if they are accessed while the associated session is open.

Although you can use the load() and get() methods interchangeably, each may
be better suited to a particular case. Use the get() method when you need a fresh
copy of an existing persistent object. You may then work with the returned object
in the normal way. The load() method is useful when you merely need a reference
to the object. For example, to remove the object, change its values, or establish an
association with another object. In all of these cases, hitting the database is
not required.

Here are the most common versions of the load() and get() methods:

public Object load(Class clazz, Serializable id) throws
HibernateException
public Object load(String className, Serializable id) throws
HibernateException
public void load(Object obj, Serializable id) throws
HibernateException

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[176]

public Object get(Class clazz, Serializable id) throws
HibernateException
public Object get(String className, Serializable id) throws
HibernateException

In all of these methods, the Serializable object represents the identifier value of
the object being loaded. If the object identifier is of a primitive type, and you are
using JDK 1.4 or before, the identifier value should be wrapped in the corresponding
wrapping object. This is not required in JDK 1.5 or later, which use autoboxing. Both
get() and load() methods may use either a Class instance or a String instance as
an argument. This argument represents the class of the persistent object that is being
loaded from the database.

The Object returned by the get() and load() methods represents the persistent
object being loaded in the application, either as a proxy or a real value. The only
method that returns void takes the persistent object with the object identifier as
arguments. The persistent object has two usages:

It helps Hibernate find the persistent class of the object.
Hibernate stores the loaded values in the persistent object.

Certainly, this object cannot be null.

The following snippet uses the load() method to load a Student instance
with identifier 2:

Session session= HibernateHelper.getSession();
Transaction tx = session.beginTransaction();
Student std1 = session.load(Student.class, 2);
Student std2 = session.load("com.packtpub.springhibernate.ch08.
Student", 2);
Student std3 = new Student();
session.load(std3, 2);
tx.commit();
//use the objects
session.close();

Since all of the std1, std2, and std3 objects use the same session, they have the same
reference, and comparing them with the == operator results in true.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[177]

In addition to this version of load() and get() methods, Hibernate also provides
these others:

public Object load(Class clazz, Serializable id, LockMode lockMode)
throws HibernateException

public Object load(String className, Serializable id, LockMode
lockMode) throws HibernateException

public Object get(Class clazz, Serializable id, LockMode lockMode)
throws HibernateException

public Object get(String className, Serializable id, LockMode
lockMode) throws HibernateException

All of these methods use an object of type org.hibernate.LockMode as their last
argument. The LockMode object determines which locking strategy Hibernate should
use for fetching the object. The LockMode class, and the locking strategies that
Hibernate uses, are discussed in Chapter 12.

JPA provides the find() and getReference() methods through the EntityManager
interface to retrieve the persistent objects:

<T> T find(Class<T> clazz, Object o);
<T> T getReference(Class<T> tClass, Object o);

Both methods receive the class and the identifier of the target object being loaded
and return the loaded object. Note that the two methods use Java generics, meaning
no type casting to the expected persistent class is needed. Here is an example:

Student std = entityManager.find(Student.class, 1);

The find() and getReference() methods are respectively equivalent to Session's
get() and load() methods. While the find() method returns null if there is no
persistent object with the given identifier in the database, the load() method throws
EntityNotFoundException. The find() method always hits the database and
returns the fully initialized persistent object, if any exist. However, getReference()
returns a proxy object that is initialized when a non-identifier field is accessed.

Refreshing objects
Sometimes, the persistent objects in memory need to be refreshed. Refreshing means
reloading the in-memory object from the database to ensure that the in-memory
instance represents the same value persisted in the database.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[178]

An advantage of Hibernate is that you usually do not need to worry about
refreshing. Hibernate always manages the in-memory persistent objects if they are
associated with valid Session. However, in some situations, including the following,
persistent in-memory objects need to be refreshed:

When the database is shared between your application and another
application (or applications).
When your application uses the database both directly and
through Hibernate.
When the persistent class uses a property that is set by the database triggers,
so persistent objects need to be reloaded to maintain the correct value.

Hibernate provides the refresh() method exposed by the Session interface to
refresh persistent objects. This method is provided in two versions:

public void refresh(Object obj) throws HibernateException
public void refresh(Object obj, LockMode lockMode) throws
HibernateException

For example, suppose the educational system application's Student class uses a
property of type Date, which represents the time that the student registered. We
use an extra column in the STUDENT table to hold that information. When Student
objects are created in the application, we do not want the application to assign the
registration time, because the registration process may take a long time, and the
application does not know exactly when it should assign a registration time to the
student. As the result, we need to use a database trigger to set the time when the
Student instance is inserted into the database. The following snippet shows how
the Student instance is reloaded from the database when it is stored:

Student std = new Student();
//set values...
Session session = HibernateHelper.getSession();
Transaction tx = session.beginTransaction();
session.save(std);
session.flush(); // Force the INSERT to occur in the database
session.refresh(std); // Reload the Student object in memory
tx.commit();
session.close();
System.out.println(std.getRegisterTime());

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[179]

In the example, Hibernate never inserts or updates the registerTime
property. Therefore, its mapping should use insert="false" and
update="false" to specify that this property is not included in the
SQL INSERT/UPDATE statements when a Student instance is inserted
or updated.

JPA provide the refresh() method through the EntityManager interface to refresh
an in-memory object with its data representation in the database. This method's
signature is as follows:

void refresh(Object obj);

The only parameter for this method is the object to refresh.

Updating objects
As with refreshing, you do not need to worry about updating persistent objects
while the Session object is open. Hibernate automatically manages all of the objects
modifications by putting them in a queue and stores the modifications when the
transaction is committed. This means that you do not need to call any Hibernate
API regarding the update, as the following snippet shows:

Session session = HibernateHelper.getSession();
Transaction tx = session.beginTransaction();
Student std = (Student) session.get(Student.class, 1);
std.setLastName("Johnston");
tx.commit(); //update the Student instance
session.close();

As soon as the session is closed, the object becomes detached, meaning Hibernate
does not track changes, and any modification to the object has no effect on the
persistent representation of the object in the database.

The Session interface provides the update() method for updating detached objects.
The update() method both reattaches the detached object to a valid session and
flushes the changes. Here is an example:

Student std = … // Loaded in the previous Session
Session newSession = HibernateHelper.getSession();
Transaction tx = newSession.beginTransaction();
newSession.update(std);
std.setLastName("Johnston");
tx.commit(); //update the database with the new value
newSession.close();

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[180]

This example reattaches the std object to a new session by invoking the update()
method of Session. The object is synchronized with the database by issuing an SQL
UPDATE statement when the transaction is committed. Note that in this example,
we have changed the lastName value after invoking the update() method. The
update() method reattaches the Student object to a new Session. Therefore, the
object is moved to the persistent state. After all, when the transaction is committed,
the session is synchronized with the database, and database representation
is updated.

Note that Hibernate updates all of the object's properties, whether they have
been modified or not. This is because the session does not use any mechanism for
identifying modified properties, meaning which properties have changed and
which have not. Instead, it assumes that all have changed. You may avoid this
issue by using the select-before-update="true" attribute in the object's
mapping definition, which forces Hibernate to select the object from the
database before updating to find the modified properties.

Whether the object is modified before or after invoking the update()
method, the session is synchronized with the database representation
when the session is flushed.

Alternatively, you can use the lock() method to associate a detached object with a
Session object. However, the lock() method does not force Hibernate to update all
changes before reattaching. This means the Session only tracks those changes to
the object that have been performed after invoking the lock() method. Here is
an example:

Student std = … // Loaded in previous Session
Session newSession = HibernateHelper.getSession();
Transaction tx = newSession.beginTransaction();
std.setFirstName("Thomas"); //will be not be updated
newSession.lock(std, LockMode.NONE);
std.setLastName("Johnston");
tx.commit();
newSession.close();

The lock() method takes an org.hibernate.LockMode instance as the second
argument. The LockMode instance tells Hibernate whether Hibernate should obtain
a database lock, or perform a version check, to verify that the object in memory and
data in the database are the same. For example, LockMode.NONE in the preceding
example tells Hibernate there is no need to obtain any database locks or to perform
a version check. This and other lock modes are discussed in Chapter 10.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[181]

JPA does not provide a specific method for updating. If the object being updated is
still associated with a valid EntityManager, the object that changes is monitored
by the EntityManager and it will be updated as soon as the transaction is
committed. If the object is a detached object, you will need to reattach it with
a valid EntityManager, through the merge() method, so the object will be
monitored by the EntityManager. The merge() method will be discussed in
the sequent sections.

Checking for dirty Sessions
To work more effectively with updating objects, the Session API provides other
methods to check whether the session is dirty and needs to be flushed. The session
is called dirty if it includes a modified object that needs to be synchronized with
the database.

The isDirty()method determines whether session-managed objects have changed,
and the database representation needs to be updated. Hibernate also offers a flush
mode, by which you can indicate when Hibernate should flush the session. This
is represented by an object of type org.hibernate.FlushMode, accessed by the
following setter and getter methods through the Session object:

public void setFlushMode(FlushMode flushMode)
public FlushMode getFlushMode()

The FlushMode class is a type-safe enumeration with the following values:

ALWAYS: After any query has been executed, the session is flushed.
AUTO: After a query has been successfully executed, the session is flushed.
COMMIT: The session is flushed when a transaction is committed.
NEVER: The application manages session flushing by manually invoking the
flush() method.

AUTO is the default flush mode. In most situations, you do not need to change it,
because letting Hibernate handle this automatically usually works best.

JPA provides two values, COMMIT and AUTO through the javax.persistence.
FlushModeType enumeration. The default flush type is AUTO, meaning the database
representation is synchronized with the object when the EntityTransaction
is committed, before a query is executed, or when the EntityManager's flush()
is invoked. Making it COMMIT just flushes the EntityManager when
the TransactionManager is committed, or when flush() is invoked.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[182]

Using the merge() method
The merge()method merges two objects which have different references in memory,
but represent the same row in the database. If you were to use the update() method
to associate a detached object with a Session object that already manages another
instance representing the same row in the database, a NonUniqueObjectException
is thrown. This indicates that two instances with the same identifier value will be
managed with the Session object. The following snippet shows how the merge()
method can be used in such cases:

Student std1 = …//a detached object
Session session = HibernateHelper.getSession();
Transaction tx = session.beginTransaction();
Student std2 = (Student) session.get(Student.class, 1);
//session.update(std1) Not allowed!, throws exception!
Std2 = session.merge(std1);
tx.commit();
session.close();

With the merge() method, if the session already manages the persistent instance,
the state of the detached instance is copied onto the persistent instance. Otherwise,
Hibernate tries to load the persistent instance from the database to merge it with the
detached instance. If no corresponding object is found, a new object is instantiated to
be merged with the object and inserted into the database.

Multiple invocation of the merge() method with arguments of different
in-memory instances of the same database row always returns the same
object reference.

The EntityManager interface provided by JPA provides a similar merge() method
with the same meaning, signature, and usage.

Deleting objects
The session's delete() method removes a persistent object from the database. Its
syntax is as follows:

public void delete(Object obj) throws HibernateException

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[183]

obj is the persistent object that is removed. This object's identifier is all that Hibernate
uses, so this object can be a dirty object not synchronized with the database. However,
there should be a corresponding object with its identifier in the database.

Here is an example:

Session session = HibernateHelper.getSession();
Transaction tx = session.beginTransaction();
Student std = (Student) session.load(Student.class, new Long(1));
session.delete(std);
tx.commit();
session.close();

The delete() method moves a persistent object from the persistent to the removed
state. The object is moved to the transient state as soon as the associated transaction
is committed.

If your application uses Hibernate interceptors, and the object must be
passed through these interceptors to complete its life cycle, the object
must first be loaded as either a proxy or a real object. Refer to the
Appendix for information about interceptors.

This method will throw a HibernateException, if the object identifier doesn't have
the value, or no objects in the database correspond to the object identifier value.

In some situations, you may want some operations to be performed when a
persistent object is removed, meaning that you may want some tasks to be done
when the delete() method is successfully invoked. The best way to implement this
mechanism is by using Spring: implementing an advice and then applying it to the
delete() method. This method is discussed in Chapter 11. In addition, Hibernate
allows the implementation of an event/listener model, or an interceptor, to handle
these cases. I have explained these techniques in the Appendix.

In addition to the delete() method provided through the Session interface, you
may use HQL to remove persistent objects. However, HQL is usually used for
removing objects when you need to deal with a collection of particular objects,
rather than a single object. The following snippet shows an example of using
HQL to remove a Student object with identifier value 1:

String hql = "delete from Student where id = :studentId";
Query query = session.createQuery(hql);
query.setInt("studentId", 1);
query.executeUpdate();

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[184]

Using HQL is often preferred because it does not need to reload the objects. Note
that the delete() method takes the persistent object as an argument. When using
this method, you must have already loaded the object. As a result, HQL uses less
memory, is executed faster, and reduces the network traffic communicating with
the database.

In addition to using the delete() method and HQL, sometimes an update operation
may cause Hibernate to remove another object or objects. This happens when there
is a one-to-many relationship between an object and its associated objects, and their
relationship is mapped with the delete-orphan cascading operation. Removing
any associated object from its parent, means the object is removed from the database
when the parent is updated. In other words, if you remove one or more associated
objects from the parent, when the parent is saved, the removed objects are erased
from the database. HQL is discussed in Chapter 9.

JPA provides the remove() method through the EntityManager interface. This
method is used in the same way as Session's delete() method to remove a
persistent object from the database. To remove an object, that object must be
associated with the EntityManager, meaning you must find the persistent object
through its identifier, through EntityManager's getReference(), and then remove
the object.

Replicating objects
Hibernate provides a replication feature that may be useful when the application
works with two or more databases. This feature allows objects to be retrieved from
one database and then stored in another one. You may need replication when you
need to synchronize databases with different data, when you need to roll back all
changes after a particular time or all changes made under particular circumstances
(for example, during non-ACID transactions), or when you are switching to a new
database instance and need to move the previous data to the new schema.

The replicate() method of session is used for this purpose. This method is
exposed through the Session interface with the following signatures:

public void replicate(Object persistentObject, ReplicationMode
replicationMode) throws HibernateException;
public void replicate(String className, Object persistentObject,
 ReplicationMode replicationMode) throws HibernateException;

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[185]

These methods write a persistent object to the target database with which the session
is associated. These methods take a persistentObject as an argument, which
represents the object being replicated. These methods also take an org.hibernate.
ReplicationMode object as an argument, which defines Hibernate's behavior when
the object already exists in the target database. (Note that we say an object already
exists in the target database if there is an existing database row with the same
identifier as the object identifier in the target database.)

The ReplicationMode class is a type-self enumeration with the following values:

ReplicationMode.EXCEPTION: Hibernate throws an exception, if the object
already exists in the target database.
ReplicationMode.IGNORE: Hibernate ignores replication, if the same object
is in the target database.
ReplicationMode.OVERWRITE: Hibernate overwrites the object, if it already
exists in the target database.
ReplicationMode.LATEST_VERSION: If the source object does not exist in
the target database, Hibernate copies the object. If the object already exists in
the target database, Hibernate overwrites the object if and only if the source's
version is newer than the target's version.

To replicate objects, we first need two Session objects opened from different
SessionFactorys, in which each SessionFactory works with one distinct database,
but has been configured with a mapping for the same persistent class. We can
then retrieve objects from one session and store them in another session. Here is
an example:

//opening two distinct session objects, referring to two different
databases
Session session1 = HibernateHelper.getSession1();
Session session2 = HibernateHelper.getSession2();

//retrieving the object from the source database
Transaction tx1 = session1.beginTransaction();
Student std = (Student) session1.get(Student.class, new Long(1));
tx1.commit();
session1.close();

//storing the object to the target database
Transaction tx2 = session2.beginTransaction();
session2.replicate(std, ReplicationMode.OVERWRITE);
tx2.commit();
session2.close();

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[186]

Note that in this example, the HibernateHelper class is different from
the HibernateHelper class in Chapter 4, which only works with a single
database. Of course, to use the HibernateHelper class in this case, you should
refactor that class so that it can provide Session objects associated with two
different SessionFactory. The following code snippet shows the refactored
HibernateHelper class:

package com.packtpub.springhibernate.ch08;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class HibernateHelper {

 private static final ThreadLocal session1 = new ThreadLocal();
 private static final ThreadLocal session2 = new ThreadLocal();
 private static final SessionFactory sessionFactory1 =
 new Configuration().configure("/hibernate1.cfg.xml").
buildSessionFactory();
 private static final SessionFactory sessionFactory2 =
 new Configuration().configure("/hibernate2.cfg.xml").
buildSessionFactory();

 //inaccessible constructor
 private HibernateHelper() {
 }

 public static Session getSession1() {
 Session session = (Session) HibernateHelper.session1.get();
 if (session == null) {
 session = sessionFactory1.openSession();
 HibernateHelper.session1.set(session);
 }
 return session;
 }
 public static Session getSession2() {
 Session session = (Session) HibernateHelper.session2.get();
 if (session == null) {
 session = sessionFactory2.openSession();
 HibernateHelper.session2.set(session);
 }
 return session;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[187]

Cascading operations
A cascading operation indicates how changes to the persistent object affect
associated objects when an object is persisted. For instance, if the removed object is
associated with other objects, what should happen to the others when the removed
object is erased from the database?

I'll explain with an example. Consider the Teacher class in the educational system
application. Suppose that each teacher is associated with a single course, meaning
the Teacher class has a property of type Course. If we use the TEACHER and COURSE
tables, respectively, to store the Teacher and Course objects in the database, then
corresponding to each Teacher object is a single Course object, and corresponding
to each row in the TEACHER table is a single row in the COURSE table. In this situation,
when a Teacher object is removed, what do you expect to happen to its related
Course object?

The application's requirements may force you to either delete the associated
object or to ignore it. In Hibernate, the result of this decision is expressed through
a configuration option in the mapping definition called cascade. This property
specifies how changing an object affects its associated objects. In our example, the
cascade attribute in the mapping file can specify whether or not the Course object
should be removed when its associated Teacher object is deleted.

Hibernate offers several different values for cascading, including the following:

none: This is the default value and specifies that Hibernate must ignore the
associated object(s) when it saves, updates, or removes the persistent object.
save-update: This specifies that Hibernate must save or update the
associated object(s) only when it saves or updates a persistent object.
delete: This determines that Hibernate must delete the associated object(s)
when it removes the persistent object.
all: This indicates that Hibernate must save, update, or remove the
associated object(s) when it respectively saves, updates, or removes the
persistent object.
delete-orphan: This is used in mapping the one-to-many relationship to
tell Hibernate if a many-side object is removed from its associated one-side
object, Hibernate must remove the many-side object from the database when
the one-side is updated.

You can specify cascading operations in the mapping file, where the mapping of
object associations is defined, through the cascade attribute. Note that the cascade
attribute can have more than one value. If it does, the values are presented as a
comma-separated list.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[188]

JPA defines different cascading values through the javax.persistence.
CascadeType enumeration. These values, with their meanings, are as follows:

PERSIST: Hibernate persists all associated transient instances of an object
being passed to the EntityManager's persist() when the EntityManager
is flushed.
MERGE: Hibernate merges all associated detached instances of an object being
passed to the EntityManager's merge() method with their corresponding
persistent values in the database.
REMOVE: Hibernate deletes the associated instances when the object is
removed by the EntityManager's remove() method.
REFRESH: Hibernate refreshes the associated objects for an object being
refreshed by the EntityManager's refresh().
ALL: This option allows all of the above cascading operations to be
used together.

The cascading operation can be defined through the cascade attribute for all object
associations. Here is an example:

public class Student {

 @ManyToOne(cascade = CascadeType.PERSIST)
 @JoinColumn(name = "SCHOOL_ID")
 private School school;

}

You can also use a comma-separated list of cascading operations, if more than one is
required. For example you can use:

 @ManyToOne(cascade = {CascadeType.PERSIST, CascadeType.MERGE})

That means both merge and persist cascading should be applied on the Student to
School relationship.

An example cascading operation
Here, I'll explain different cascading values by referring to our example of an
educational system application. Consider the Student class as shown below:

package com.packtpub.springhibernate.ch08;

import java.util.List;

public class Student {

 private int id;
 private String firstName;

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[189]

 private String lastName;
 private Address address;
 private List courses;

 //default constructor
 public Student(){
 }

 public Student(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName= lastName ;
 }

 //setter and getter methods
 //equals() and hashCode()
}

This class is associated with another persistent class, Address. The Student class
also holds a courses property of type java.util.List, representing all courses
that a student has passed. Each course is represented by another persistent class
called Course.

The following code shows the Address:

package com.packtpub.springhibernate.ch08;

public class Address {
 private int id;
 private String street;
 private String city;
 private String zipCode;

 //default constructor
 public Address() {
 }

 public Address(String street, String city, String zipCode) {
 this.street = street;
 this.city = city;
 this.zipCode = zipCode;
 }
 //setter and getter methods
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[190]

And this is the Course class:

package com.packtpub.springhibernate.ch08;

public class Course {
 private int id;
 private String name;
 private int unit;

 //default constructor
 public Course(){
 }

 public Course(String name, int unit) {
 this.name = name;
 this.unit = unit;
 }

 //setter and getter methods
}

The following code shows the mapping definition for the Address class:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch08.Address"
table="ADDRESS">

 <id name="id" type="int" column="id">
 <generator class="increment"/>
 </id>

 <property name="street" column="STREET" type="string"/>
 <property name="city" column="CITY" type="string"/>
 <property name="zipCode" column="ZIPCODE" type="string"/>
 </class>
</hibernate-mapping>

Here is mapping metadata for the Course class:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch08.Course"
table="COURSE">

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[191]

 <id name="id" type="int" column="id">
 <generator class="increment"/>
 </id>

 <property name="name" column="NAME" type="string"/>
 <property name="unit" column="UNIT" type="integer"/>
 </class>
</hibernate-mapping>

And this is the Student's mapping definition:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class name="com.packtpub.springhibernate.ch08.Student"
table="STUDENT">

 <id name="id" type="int" column="id">
 <generator class="increment"/>
 </id>

 <property name="firstName" column="FIRST_NAME" type="string"/>
 <property name="lastName" column="LAST_NAME" type="string"/>

 <many-to-one name="address"
 class="com.packtpub.springhibernate.ch08.Address"
 column="ADDRESS_ID"
 cascade="save-update"/>

 <bag name="courses" inverse="true" cascade="save-update">
 <key column="STUDENT_ID"/>
 <one-to-many class="com.packtpub.hibernate.Course"/>
 </bag>

 </class>
</hibernate-mapping>

Note that, the ADDRESS_ID and STUDENT_ID are extra columns in the STUDENT and
COURSE tables, respectively. They are the foreign keys to the STUDENT table's primary
key, and refer to the associated Student object.

The Course and Address mapping files do not have considerable information, since
they consist merely of plain properties. The only thing we are interested in here is
the cascade attribute in the mapping definition of Student, which currently has a
save-update value.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[192]

When a Student object is persisted in the STUDENT table, its associated address is
persisted in another table called ADDRESS. The many-to-one relation in the mapping
file expresses that every Student object is associated with an Address object. For
each Student object persisted in the STUDENT table, there should be at least one
corresponding address object in the ADDRESS table.

The <bag> element specifies that the Student object is associated with a collection of
the courses the student has passed.

Note that the corresponding mapping file for

private List courses;

has been represented with the <bag> element as follows:

<bag name="courses" inverse="true" cascade="save-update">
 <key column="STUDENT_ID"/>
 <one-to-many class="com.packtpub.springhibernate.ch08.Course"/>
</bag>

The cascade attribute states how changing a Student object affects its associated
courses and address. In other words, if a Student object is saved, updated, or
removed, this attribute states whether the object's associated address and courses
should be saved, updated, or removed, as well. Let's see what each value for the
cascade attribute means.

Using cascade="save-update"
In the previous section, relations of the Student with the Course and Address
objects were mapped by using the save-update cascading operation. We expect
that when a Student object is saved or updated, its associated objects, address, and
courses are saved or updated, as well. However, when a student object is removed,
we do not expect its associated objects to be erased from the database, since the
cascading operation does not state delete cascading with the value delete. Look
at the following snippet:

Student std = new Student("Arash", "Hoseini");
Address addr = new Address("Pastor", "Tehran", "1415833243");
Course course1 = new Course("Core Java", 2);
Course course2 = new Course("J2EE Programming", 3);
List courses = new ArrayList();
courses.add(course1);
courses.add(course2);
std.setAddress(addr);
std.setCourses(courses);
Session session = HibernateHelper.getSession();

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[193]

Transaction tx = session.beginTransaction();
session.save(std);
tx.commit();
session.close();

After this, we expect that when std is saved, course1, course2, and phone are all
saved, as well.

Using cascade="none"
If we use cascade="none" for each relationship in the mapping, no persistent
operation on a Student object may be propagated to its associated objects mapped
with that relationship. In other words, saving, updating, or removing a Student
object does not lead to saving, updating, or deleting its associated object(s) that
are mapped with cascade="none".

Note that none is the default value of the cascade attribute.

Using cascade="delete"
cascade="delete" determines that, when a Student object is removed, all of its
associated objects are erased from the database. However, saving or updating the
Student object does not affect the associated objects in the database, even if they
have changed.

Using cascade="delete-orphan"
Another cascade value is delete-orphan, used for objects that have a one-to-many
relationship with others. This cascade specifies that, if one or more associated objects
are removed from the parent, the removed object(s) are removed from the database
when the parent is updated.

For example, suppose that the Teacher class has a property called courses. This
property represents the list of courses that a teacher teaches. When a Course object
is removed from the courses property, we want the course to be removed from the
database when the Teacher object is updated. To do this, we can define the Teacher
and Course relationship as follows:

<bag name="courses" inverse="true" cascade="all,delete-orphan">
 <key column="TEACHER_ID" />
 <one-to-many class="com.packtpub.springhibernate.ch08.Course" />
</bag>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[194]

The default-cascade attribute of the <hibernate-mapping>
element can be used to specify a general cascading operation for all of
the object relationships defined inside the <hibernate-mapping>
element. Note that each object relationship can use its own cascade
attribute to overwrite the default value specified generally by the
default-cascade attribute.

Lazy loading
Loading persistent objects from the database is an expensive operation, particularly
when the objects are associated with many other objects. To enhance loading
performance, Hibernate provides a great feature called lazy loading, which we saw
briefly in Chapter 3. Let's look at it again, now that we know more about Hibernate's
persistence functionality. Using lazy loading, Hibernate provides proxy objects,
instead of actual persistent objects, whenever they are queried. The proxy objects
act like the real object, but without the real values. This prevents Hibernate from
unnecessary hitting the database, which would reduce the application's performance.
The real values of the properties, object associations, and collections are loaded from
the database when their accessors explicitly access them.

In the Loading Objects section of this chapter, you learned how to load persistent
objects as proxies. Hibernate provides get() and load() methods to retrieve objects.
get() always hits the database and fully initializes the retrieved object, but load()
just initializes a proxy object which acts as the real object without real values. When
each non-identifier property is accessed for an object that is retrieved through
load(), the database is queried for that property. To provide this functionality,
Hibernate creates a subclass of the persistent class at runtime, and overrides the
accessor methods, so that when the accessor methods are called, the real values
are fetched from the database.

Since proxy objects are instances of Hibernate runtime-generated
classes, you can not use the loaded instance's getClass() method
to find the persistent object's class. Instead, you can pass the object to
the getClassWithoutInitializingProxy() method of the
org.hibernate.proxy.HibernateProxyHelper class to get
the actual persistent class.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[195]

Proxy generation for a particular persistent class can be disabled with lazy="false",
in the following mapping definition:

<class name="com.packtpub.springhibernate.ch08.Student"
 table="STUDENT"
 lazy="false">
</class>

In this situation, the load() and get() methods for loading the Student instances
work in the same way.

It is also possible to change the default lazy initialization for a particular associated
object or collection. By default, Hibernate loads the associated objects and collections
as a proxy, even if you are loading the persistent object through the get() method of
Session. To disable lazy initialization, you need to use lazy="false" for mapping
elements inside the mapping definitions. Here is an example:

<class name="com.packtpub.springhibernate.ch08.Student"
table="STUDENT">

 <bag name="courses" cascade="all" table="STUDNET_COURSE"
 lazy="false">
 <key column="STUDENT_ID"/>
 <many-to-many
 class="com.packtpub.springhibernate.ch08.Course"
 column="COURSE_ID"/>
 </bag>
</class>

JPA provides find() and getReference() methods through the EntityManager
interface, which are somewhat equivalent to Session's get() and load() methods,
but not exactly the same! While find() always hits the database, getReference()
always uses a proxy with just initialized identifier. The difference in JPA and
Hibernate native API is in loading associated objects and collections. While in
Hibernate, get() always hits the database and load() always loads the object lazily.
In JPA, find() loads the ManyToOne and OneToOne associations not lazily, but by
default. The getReference() method always retrieves the associated objects and
collections lazily.

JPA allows the default behavior of association loading to be changed through the
mapping metadata. This is done by using the javax.persistence.FetchType
enumeration with two values: LAZY and EAGER with the same meaning as
lazy="true" and lazy="false", respectively. Here is an example:

public class Student {

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "SCHOOL_ID")
 private School school;

}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Hibernate Persistence Behavior

[196]

This means the associate School object for each Student must be loaded lazily.

Some useful Session methods
At the beginning of this chapter, we introduced different methods exposed through
the Session interface. Some of these methods have been discussed in this chapter,
while others are fully explained in other chapters. However, there are some useful
methods that fit into this chapter's scope. These methods may be used any time when
working with a Session object or objects managed by the Session instance. The
following table summarizes the Session's methods:

Method Description
void persist(Object
transientObject)

Takes a transient object as an argument and
associates it with the current session. The session
tracks the object's changes and synchronizes the
object with the database when Hibernate commits the
transaction or flushes the session.

Serializable
getIdentifier(Object
persistentObject)

Returns the identifier of the persistent instance cached
by the session, or throws an exception if the object is
transient or is not associated with the current session.
Note that the object identifier's name is determined
through the mapping definition. This method allows
us to access the object identifier when we do not know
which of an object's properties is its identifier.

boolean contains(Object
persistentObject)

Determines whether the persistent instance is
associated with the current session.

void evict(Object object) Disassociates the persistent instance with the current
session. The session does not track the changes to be
synchronized with the database.

void clear() Clears the session of all cached instances, then
cancels all pending saves, updates, and deletions that
are managed by the session to be synchronized with
the database.

void flush() Forces the pending saves, updates, and deletions,
currently managed by the session, to be synchronized
with the database. This method must be called before
committing the transaction and closing the session.
If you do not call this method, the Transaction's
commit() method calls it internally.

boolean isOpen() Determines whether the session is open or closed.
boolean isDirty() Determines whether the session contains any

pending saves, updates, or deletions that must be
synchronized with the database.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 8

[197]

Summary
All persisting operations in Hibernate are performed through the Session API. In this
chapter, we discussed the life cycle of persistent objects inside Hibernate. The states
an object goes through with respect to persistence are transient, persistent, detached,
and removed. Transient objects are objects that have not been stored yet. Detached
objects have already been stored but currently are not associated with a valid session
instance. Persistent objects have already been stored and are currently associated
with a valid session object. Removed objects are arranged to be removed from the
database, but have not yet been removed. These objects are removed as soon as the
session's associated transaction is committed. A session object is called valid when it
has not been closed by invoking its close() method.

We also discussed the basic persistent operations which are exposed through some
essential methods of the Session interface. These methods include the load(),
save(), update(), refresh(), replicate(), and delete() methods.

Cascading operations was another topic introduced in this chapter. Cascading
expresses what happens to associated object(s) when a persistent object is stored,
updated, or removed from the database. Some valid values include save,
save-update, delete, and delete-orphan.

Hibernate, like many other O/R mapping technologies, provides a lazy initialization
mechanism, called lazy loading. This allows a proxy object to be used, instead
of loading the real object from the database. Lazy loading enhances persistence
performance, particularly when huge persistent objects exist in the database. Proxy
generation can be disabled through the lazy attribute, used with the class and its
nested mapping elements.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate
Queries are the vital part of any data-access code. Almost all applications need to
investigate persistent objects and explore objects that satisfy specific criteria. SQL is a
powerful language for querying persistent data and determining query criteria with
WHERE and JOIN clauses. Using SQL, you can express any query restriction for the
objects your application needs. As the number of query restrictions grows, the query
expressions become more complex, making those query expressions hard to develop,
test, and maintain. Moreover, the created query expressions may not be effective and
optimized. Querying persistent objects is another area of the persistence layer where
Hibernate simplifies data access development and produces effective queries.

Hibernate comes with a rich set of approaches to query persisted objects. It provides
a wide range of querying methods, from native SQL to advanced Hibernate-specific
approaches. In this chapter, we will discuss the querying approaches supported by
Hibernate, which include the following:

Hibernate Query Language (HQL): Hibernate's HQL is a flexible, powerful
SQL-like query approach. However, HQL and SQL have been designed to
work with different data. While SQL queries deal directly with raw data in
the database, HQL queries work with persisted objects and their properties
through Hibernate. In other words, SQL queries are expressed in terms of
tables, columns, views, and so on, whereas HQL expressions are states in
object-oriented terms, using classes and properties of classes. Both SQL
and HQL queries are specified as strings, composed of select, from, or
where clauses.
Native SQL: Hibernate lets us use native SQL. As we will see later, if you
use native SQL, you will lose some Hibernate benefits, including caching,
so using native SQL is not recommended except in special cases.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[200]

Criteria API: Criteria API, an alternative to HQL, allows us to express
queries and their restrictions programmatically, as opposed to HQL queries,
which are specified as strings. Each query in the Criteria API is represented
by an object of type Criteria. The Criteria objects use nested Criterion
objects as their restrictions, which act as filters to pick up the persisted
objects. The Criteria approach is also enriched by a wonderful capability
called Query By Example (QBE), which lets you supply example objects to
indicate the objects you are looking for.

HQL queries are great in most situations, particularly when object inheritance or
associations come into query restrictions. In contrast, Criteria-based queries are
useful when the query criteria are changing continuously, perhaps due to user input.

The querying language idea is not unique to Hibernate. Other ORM
frameworks also provide their own query languages.

In this chapter, we will look at the different approaches provided by Hibernate,
which may be used either by native Hibernate API or JPA.

The Session API and querying
In all of the approaches mentioned so far, the Session API is used to create an
appropriate query object. This object is a handler for the query expression to specify
restrictions or projections of the objects you want to retrieve, to pass runtime query
parameters to query expressions, and to execute the query and retrieve the results.
The following table provides a quick overview of the query interfaces involved in
each approach, and the corresponding methods in the org.hibernate.Session and
javax.persistence.EntityManager interfaces for supported query approaches:

Query Approach Hibernate Query Interface Example
HQL org.hibernate.Query Query query = session.

createQuery("from
Student"); List results =
query.list();

Native SQL org.hibernate.SQLQuery SQLQuery query =
session.createSQLQuery(
"SELECT * FROM STUDENT");
List results = query.
list();

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[201]

Query Approach Hibernate Query Interface Example
Criteria API org.hibernate.Criteria Criteria criteria

= session.
createCriteria(Student.
class); List results =
criteria.list();

JPA javax.persistence.
Query

Query jpaQuery =

entityManager.
createQuery("from Student");

List results = jpaQuery.
getResultList();

Note that in all cases, a list() method is always called to retrieve the results.

Let's look at these approaches in detail and see how to use each approach in practice.

HQL
As mentioned earlier, HQL is an SQL-like, Hibernate-specific, and database
independent language used to query persisted objects from the back-end rational
database. Since Hibernate handles many relational storage issues, and solves the
relevant problems when mapping the object-oriented world to the relational world,
HQL is a great substitute for SQL when you're developing the object-oriented
application which interacts with a relational database through Hibernate.

HQL is not a substitute for SQL. Rather, it lets us express our queries in an
object-oriented form. When an HQL expression is executed, it is first transformed
into an SQL statement. The generated SQL is then executed against the database, the
result is placed in persistent objects, and the objects are returned to the application.
The following figure depicts this scenario:

Database

HQL SQL

Object data

Application

H
ib

er
na

te

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[202]

The from clause
In its simplest form, an HQL expression consists of a from clause that ends with the
name of a particular persistent class. Here is an example:

from Teacher

This HQL expression is used to query all instances of the Teacher class.
Since auto-import is the default in the mapping files (see Chapter 5, the
<hibernate-mapping> element), the Teacher class does not need to be expressed
in the qualified form. In situations where the classnames are duplicated in the
application, the duplicated classnames must be specified in the qualified form.

To execute an HQL expression, an org.hibernate.Query instance is first created by
invoking the createQuery() method of a Session object. The method signature for
the createQuery() method of Session is as follows:

public Query createQuery(String hqlQuery) throws HibernateException

This method's only String argument is the HQL expression you are executing.
The returned Query instance provides many methods to specify restrictions on the
results, execute the query, and obtain the query results. It also has other methods for
setting named parameter values, adding a comment to Hibernate-generated SQL,
setting a JDBC timeout and JDBC fetch sizes, and scrolling the result. We'll see more
about this later in this section.

After you've created and prepared the Query instance, you can invoke its list()
method to execute the query against the database and retrieve the results as a list of
persistent objects. Here is an example:

Query query = session.createQuery("from Teacher");
java.util.List<Teacher> teachers = query.list();

The returned teachers object is the result of query execution, which contains
persistent Teacher objects satisfying the query restrictions (there is no restriction in
this query).

Like SQL, HQL is case-insensitive. Because Java is a case-sensitive
language, you should express all Java-related words (such as
classnames, property names, and so on) in the correct case. For
example, the proper form of the HQL expression to query objects
of the Teacher class is from Teacher, not from teacher, or
any other variation of the word Teacher.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[203]

The as clause
The simplest form of an HQL expression, which includes only a from clause
followed by a classname, is sufficient to query all persistent instances of a particular
class. However, in many situations, the application needs a subset of objects that
match a set of criteria, instead of the entire set. In such situations, you need to assign
an alias to the superset of objects, so you can refer back to them in other parts of the
query, such as the criteria expression. For this purpose, you can use the as clause in
the HQL expression, as in SQL.

For instance, to load all Teacher objects with an age of 30, you can use the
as clause in the HQL expression (as follows) to assign the teacher alias to the
persistent Teachers:

from Teacher as teacher where teacher.age=30

As you can see, the teacher alias lets us refer back to the objects in the where clause
to restrict the result (I'll cover the where clause later in this section as this example
is fairly self-explanatory). The as keyword is optional. It just provides a sense of
familiarity for developers who have experience with SQL. Therefore, this HQL
expression would be expressed as follows:

from Teacher teacher where teacher.age=30

The query expression may include more than one class. Each can have its own alias:

from Teacher as teacher, Student as student

It is good practice to name query aliases using an initial lowercase
letter, consistent with the Java naming convention for variables.

Query an object's associations
SQL uses the JOIN clause to join two or more tables and query them together. Its
cousin, HQL, also supports the join clause to query instances of two or more
persistent classes in a single query. You can also use the join clause when the
object's association criteria are part of the restrictions.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[204]

Hibernate presents five different joins borrowed from ANSI SQL, as shown in the
following table:

Join Type Description
Inner Join Used to select persistent instances from one table, with their associated

instances in another table. For instance, from Student s inner join
s.courses as c selects all students with their associated courses.
If a student instance is not associated with any course, it will not
be selected.

Cross Join Used to select persistent instances stored in different tables, whether
or not they are associated. For instance, to select all Students,
Teachers, and Courses, you can use HQL from Student s,
Teacher t, Course c.

Left Outer Join Is similar to inner join, but additionally selects all instances of the left
persistent class that are not associated with any instance of the right
persistent class. For instance, from Student s left outer join
s.courses as c selects all students with their associated courses,
and all students that are not associated with any Course instance.

Right Outer Join Selects all instances of the right persistent class with their associated
instances of the left persistent class. For instance, from Student s
right outer join s.phone as p selects all students with their
associated phones, and all students that are not associated with any
phone instance.

Full Join Selects all instances of two associated persistent classes, whether
or not the instance in the database on either side is associated with
another instance on the other side. For instance, from Student s
full join s.phone as p selects all Student and Phone instances,
that is, both the associated and the unassociated instances.

To understand retrieving persistent objects using join clauses, we assume that the
STUDENT and COURSE tables contain the data shown in the figure below:

STUDENT STUDENT_COURSE

FIRST_NAME

1 1

1

2 1

2 3 2

33 2 3

John

Robert

Kevin

STUDENT_IDSTUDENT_ID COURSE_ID COURSE_ID NAME
Compiler

English

Physics

COURSE

Next, assume that we use the inner join to load the Student and Course instances
as follows:

String joinHQL = "from Student s inner join s.courses as c";
Query joinQuery = session.createQuery(joinHQL);

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[205]

List results = joinQuery.list();
for(int i=0; i<results.size(); i++){
 Object[] objects = (Object[]) results.get(i);
 Student student = (Student) objects[0];
 Course course = (Course) objects[1];
}

The result is a list of arrays of Objects (Object[]). The first element of each array is
a Student, and the second element is a Course instance. The following figure shows
the structure of the results:

FIRST_NAME

1

1

2

3

2 2

John

John

Kevin

STUDENT_ID COURSE_ID NAME
English

English

Physics

results(0)-->

results(1)-->

results(2)-->

objects [0] objects [1]

The select clause
Like SQL, HQL supports the select clause. This provides an efficient approach,
letting you select only the desired properties of queried objects. In other words,
while the from clause works with objects, the select clause works with the
object's properties.

For example, to query only the first name of teachers, instead of loading the
entire set of Teacher objects, you can use the following query expression with
the select clause:

select teacher.firstName from Teacher teacher

If you want to select more than one property, specify the properties names as a
comma-separated list. For example, to load firstName and lastName of Teacher
objects, change the HQL query as follows:

select teacher.firstName, teacher.lastName from Teacher as teacher

The result of executing this HQL is a list of arrays. Each array has two members,
maintaining, respectively, the firstName and the lastName of a selected object.

The generated SQL will only query the FIRST_NAME and LAST_NAME columns, instead
of the entire TEACHER table. Retrieving the required properties, instead of entire
objects, has a performance effect (reducing network traffic, decreasing memory
usage, and querying fewer columns in the database) of speeding up execution.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[206]

HQL's aggregate functions
HQL provides aggregate functions, so we can query information related to a
group of objects. The syntax of these functions is the same as the syntax in SQL,
and they also work in the same way. The only difference is that HQL's aggregate
functions work with objects and the object's properties, instead of tables and the
table's columns.

Aggregate functions supported in HQL are avg(), min(), max(), sum(), and
count(). Each of these methods takes a string as an argument, which is the property
name on which the function works. For example, the following HQL query returns
the average age of the students:

select avg(student.age) from Student student

When you execute this query, you get a List object which contains a single Integer
value. This is the case with all aggregate functions.

The count()function takes a property name as argument and returns the number of
times that property appears in the result set. This function has two versions:

count(*)
count(aliasName.propertyName)

These count the number of all objects and the number of objects with the property
propertyName in the result set, respectively.

You can use the distinct and all keywords with the count() function with the
same semantics as in the count() method in SQL. The distinct keyword tells
count() to only count the distinct and different values in the result set. For example,
the following HQL returns only the number of different ages for students:

select count(distinct student.age) from Student student

If your query expression includes more than one aggregate method, the returned
List object contains a number of objects. Each object corresponds to an aggregate
method. For instance, the following snippet retrieves the minimum and maximum
ages of students:

String queryHQL = "select min(std.age), max(std.age) from Student
std";
Query query = session.createQuery(queryHQL);
List bounds = query.list();
Double min = (Double)bounds.get(0);
Double max = (Double)bounds.get(1);

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[207]

The where clause
HQL is as flexible and efficient as SQL, because it provides the where clause to
restrict a query's result. In HQL expressions, the where clause lets us express
constraints on the property values of objects returned by the query, and restrict the
query's result. Additionally, as you will see in this chapter, you may use the where
clause in bulk-update or bulk-delete query expressions to restrict the objects being
updated or deleted, respectively. Usually, you refer to the selected objects by an
alias. If no alias exists, then you may refer to properties by name.

For example, the following query expressions are the same, returning all instances of
Student with an age greater than 25:

from Student student where student.age>25
from Student where age>25

As you can see in these HQL statements, the where clause may include primitive
values, such as numbers and Booleans, when a condition is specified. You can also
use string values for comparisons in the where clause, but these must be inside single
quotes. Additionally, it is possible to compare properties of objects to other properties.

To express restrictions in HQL and JPA-QL expressions, and define comparison
restriction between properties, Hibernate and JPA support a wide range of rich and
powerful comparison operators and functions, including these:

Operators/Functions Names
Mathematical operators +, -, *, /
Comparison operators =, >=, <=, <>, !=, like, not like
Logical operators and, or, not
Grouping operators in, not in, between, is null, is not

null, is empty, is not empty, member
of, not member of

Scalar database-supported functions sign(), trunc(), rtrim(), sin()
Collection-valued taken functions
(HQL only)

minelement(), maxelement(), minindex(),
maxindex()

Time and date functions (HQL only) current_date(), current_time(),
current_timestamp(), second(),
minute(), hour(), day(), month(), year()

JPA standardized functions substring(), trim(), lower(), upper(),
length(), locate(), abs(), sqrt(), mod(),
sort(), concat(), locate(), size()

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[208]

Here is an example of using the not like and > operators to query all students who
are older than 18, and whose first names do not start with "Jo":

from Student where age>18 and firstName not like ‘Jo%'

The like and not like operators come with the wildcard symbols % and _. The like
and not like operators allow us to get matches that are, respectively, similar to or
different from a phrase we supply before or after a symbol.

Refer to the Hibernate documentation at http://docs.jboss.org/hibernate/
stable/core/reference/en/html_single/#queryhql-expressions for more
details about these functions.

Positional versus named parameters
Like JDBC, Hibernate lets us use positional parameters to construct queries
dynamically at runtime. These parameters are specified with a ? in query
expressions, and are addressed with their position indexes to be filled with the
desired values at runtime. The Query interface provides methods similar to the
java.sql.PreparedStatement methods for binding arguments of Java types.
These methods include setInteger(), setString(), setDate(), setLocale(),
and setTimestamp(). Additionally, the Query interface provides the general
setParameter() method for binding parameters with any type. When you use
setParameter(), Hibernate automatically detects the parameter type and binds the
parameter with the proper type. The following snippet uses parameters to construct
an HQL expression:

String hql = "from Student where firstName = ? and lastName=?";
Org.hibernate.Query query = session.createQuery(hql);
query.setString(0, "Arash");
query.setString(1, "Moradi");
List list = query.list();

We may use positional parameters with JPA as follows:

String jpaQL = "from Student std"+
 " where std.firstName=?1 and std.lastName=?2";
javax.persistence.Query query = entityManager.createQuery(jpaQL);
query.setParameter(1, "Arash");
query.setParameter(2, "Moradi");
List list = query.getResultList();

Hibernate index parameters start at 0 (query.setString(
0, "Arash");), whereas JPA's start at 1 (query.setParameter(
1, "Arash");).

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[209]

Although this method of constructing a query dynamically is flexible enough,
the following issue still needs to be addressed. If the position of parameter changes,
the code that next assigns a value must change, as well. For example, suppose
we swap firstName and lastName in the preceding HQL. In that case, we must
change the query.setString() or query.setParameter() statements to assign the
parameter's values properly.

To deal with this problem, Hibernate offers a more flexible approach, which is
named parameters. Named parameters let you refer to each parameter with a name,
instead of by index. Each parameter name is specified with an arbitrary name that
begins with the prefix in query expressions. Then, parameters are referred to by their
names, instead of their positions.

The following code shows changes to the previous snippet, which now uses named
parameters instead of JDBC-style positional parameters:

String hql = "from Student where firstName=:firstName and
lastName=:lastName";
Query query = session.createQuery(hql);
query.setString("firstName", "Arash");
query.setString("lastName", "Moradi");
List list = query.list();

As you can see, named parameters are assigned on the basis of their names, and
not on their positions in a query. Using named parameters improves application
maintenance, because adding or removing named parameters may effect fewer
changes to the code than JDBC-like positional parameters.

HQL also permits us to use object parameters that are filled with persistent objects,
rather than basic Java types. You accomplish this by using the setEntity() method
of a Query object, which sets the persistent object as a parameter value. The following
code queries Student objects that have a particular phone number, represented by a
Phone object:

String phoneHQL = "from Phone where number='09723455667'";
Query phoneQuery = session.createQuery(phoneHQL);
Phone phone = (Phone)phoneQuery.list().get(0);
…
String hql = "from Student as student where student.phone=:phone";
Query query = session.createQuery(hql);
query.setEntity("phone", phone);
List students = query.list();

Note that setEntity() implicitly expands to the identifier of the phone object.
This means we are looking for all students associated with a phone object that has a
particular identifier value.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[210]

You can still use setParameter() instead of the setEntity()
method to set a persistent object. In the snippet shown here, simply
replace query.setEntity("phone", phone); with query.
setParameter("phone", phone);.

The order by and group by clauses
The returned objects of an HQL query may be ordered by any property of the selected
objects. To do this, use the order by clause in the HQL expressions, either ascending
(asc) or descending (desc). For example, the following HQL queries Student objects
older than 20, and sorts them in ascending order by the firstName property:

from Student s order by s.firstName asc

The result can be ordered on more than one property. In this case, you need to add
additional properties to the end of the order by clause as a comma-separated list. For
instance, you can do this:

from Student s order by s.firstName asc, s.age desc

This selects all Student objects and first orders them in ascending order by
firstName, and then in descending order by the age property.

HQL also lets us use the group by clause to group the returned aggregate values by
any property of the selected objects:

select student.age, avg(student.age), count(student) from Student
student
group by student.age

If the underlying database supports it, you can use aggregate functions with having
or order by clauses.

Neither the group by clause nor the order by clause may contain
arithmetic expressions.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[211]

Bulk updates and bulk deletes with HQL
Using HQL, you can also update or delete a set of persisted objects. The syntax
of HQL for update and delete operations is similar to SQL. HQL uses the update
and delete keywords with the set and where clause to update or delete rows that
satisfy a set of criteria. For instance, to modify the name of a course, you can use the
following HQL expression:

String updateHql = "update Course set name = :newName where name = :
name";

The usage of the set keyword in HQL is similar to the usage of set in SQL. It
determines new values for object's properties. You can optionally use the where
clause to restrict the object being updated.

Similarly, you can use the delete query with an optional where clause to remove a
set of objects from the database. The following HQL expression is an example of a
delete query to remove a course with a particular name from the database:

String deleteHql = "delete from Course where name = :name";

Note that both of these examples use named parameters to be set with runtime
values before query execution.

Other steps of query execution are similar to the execution of an ordinary HQL
query. You need to obtain a Query instance associated with the query expression,
and then set the parameter values to the Query object before execution. Finally, you
must invoke the executeUpdate() method of the Query instance, instead of the
list() method that is used for normal HQL expressions. Here is an example:

String updateHql = "update Course set name = :newName where name = :
name";
Query query = session.createQuery(updateHql);
query.setString("name","Computer Programming");
query.setString("newName","Java Language Programming");
int rowsAffected = query.executeUpdate();

The executeUpdate() method returns an int value, representing the number of
rows affected by execution of the update or delete query.

Since bulk-update and bulk-delete queries do not need to reload the
object before update or delete execution, they are preferred to the
Session's update() or delete() methods, particularly when there
are many objects to update or delete.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[212]

Queries in native SQL
In addition to HQL, Hibernate lets us load persistent objects with native SQL queries.
Although using native SQL doesn't seem useful, you may prefer to use native SQL
in some situations. For example, you may need to utilize database-specific features
which are not supported by HQL. Another situation is when you want to call a
stored procedure. Moreover, you may use native SQL when you are migrating from
a legacy JDBC-based data tier to Hibernate and need to use SQL in the application. In
these cases, either you must use native SQL, or you may prefer to continue working
with SQL.

Hibernate provides the org.hibernate.SQLQuery interface to work with SQL
queries. To use it, pass the SQL query expression as a String argument to the
createSQLQuery() method of the Session instance and obtain an SQLQuery
instance. After all, the list() method of SQLQuery executes the query and fetches
the result. The following snippet shows how to create an SQLQuery instance to
execute an SQL query and execute it:

String sql = "SELECT * FROM STUDENT";
SQLQuery query = session.createSQLQuery(sql);
List results = query.list();

In its basic form, an SQL query returns a list of scalars. In this example, the results
are a list of Object arrays (Object[]) that is, each array holds a row of the STUDENT
table. Hibernate uses ResultSetMetadata to deduce the actual order and types of
the returned scalar values. You can discard undesired columns, by invoking the
addScalar() method as follows:

String sql = "SELECT * FROM STUDENT";
SQLQuery query = session.createSQLQuery(sql);
query.addScalar("ID", Hibernate.LONG);
query.addScalar("FIRST_NAME", Hibernate.STRING);
query.addScalar("BIRTHDAY", Hibernate.DATE);
List results = query.list();
Iterator itr = results.iterator();
while (itr.hasNext()) {
 Object[] row = (Object[]) itr.next();
 for (int i = 0; i < row.length; i++) {
 Object column = row[i];
 System.out.println(column);
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[213]

Although the query uses *, and could return more than the three listed columns,
Hibernate will not use ResultSetMetdata. Instead, it explicitly gets the ID,
FIRST_NAME, and BIRTHDAY columns as a Long, a String, and a DATE from the
returned result set. Note that Hibernate still uses "SELECT * FROM STUDENT" to
query the database. Hibernate then selects the specified columns from the result
of the query execution and puts each selected row in the returned list as an
Object array.

In addition to the addScalar() method, SQLQuery provides another method,
which is addEntity(). With this method, you can tell Hibernate to select only those
columns from the returned resultset that are required to populate a persistent
class. Look at the following example:

String sql = "SELECT {student.*} FROM Student student";
SQLQuery query = session.createSQLQuery(sql);
query.addEntity("student", Student.class);
List results = query.list();

{student.*} determines all columns associated with the alias student, that is,
the STUDENT table, to be selected from the database. After the query executes, the
results object contains instances of the Student class. Notice that this query is not
executed in the target database as is. Hibernate transforms it to the appropriate SQL
of the target database.

Look at another example:

String query = "select {student.*} from STUDENT student" +
 " join ADDRESS address on student.ADDRESS_ID = address.ID" +
 " where address.STREET = :street";
SQLQuery sqlQuery = session.createSQLQuery(query);
sqlQuery.addEntity("student", Student.class);
sqlQuery.setParameter("street", "rockway");

This example queries students who live on the same street. As you can see, the query
selects the STUDENT table with the alias student, and joins it to the ADDRESS table
with the alias address. The query uses these aliases to refer to the tables later, in the
query restrictions. The addEntity() method here indicates that Hibernate should
only return the columns required to populate the Student class.

Note that this example also shows how to use a named parameter with an SQL
query. With SQLQuery, you still have the option to use the general setParameter()
method for setting parameters with any type, or proprietary methods for each Java
type such as setString(), setDate(), setTimestamp(), and so on.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[214]

In addition to the addScalar() and addEntity() methods used for selecting the
required columns, SQLQuery provides the addJoin() method to select columns of
tables joined to a table by the query. Look at the following example:

String sql = "select {student.*}, {phone.*} from STUDENT student" +
 " join PHONE phone on student.ID = phone.ID" +
 " where LAST_NAME=:lastName";
SQLQuery sqlQuery = session.createSQLQuery(sql);
sqlQuery.addEntity("student", Student.class);
sqlQuery.addJoin("phone", "student.phone");
sqlQuery.setParameter("lastName", "Romeny");
List results = sqlQuery.list();

This example selects a row of STUDENT, and a row of PHONE, which are associated
with each other through their ID column for a particular student with last
name Romeny.

This example selects columns from two tables, and we can select the columns
obviously with two persistent classes. The addEntity() method selects columns of
the first table that populate the Student class. The addJoin() method tells Hibernate
to select columns that populate the associated phone of the Student instance.

Named SQL and HQL queries
Named queries refer to SQL or HQL queries that are defined declaratively in the
mapping files, but are called programmatically in the Java code. The syntax of named
SQL and HQL queries is the same as the syntax of ordinary SQL and HQL queries,
which are defined in the Java code. They could include either JDBC-like positional
parameters (?) or named parameters.

Named queries have many benefits. At first, their syntax is checked at deploy
time, and not during program execution. You can have several different named
queries and easily switch from one to another during development. Additionally,
because they are kept separated from Java code, they are easy to maintain. During
application, development or deployment can easily change, without requiring any
change to the application code.

The <query> and <sql-query> elements are used, respectively, to declare HQL and
SQL queries in the mapping files. Both use a name attribute, which assigns a name to
the query to use for calling the query. Note that the name used for each query must
be globally unique in the application.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[215]

The following code shows a definition of both a named HQL query, and an SQL
query, in the mapping file for the Student class:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
<hibernate-mapping>
 <class name="com.packtpub.springhibernate.Student">
 <!—properties mappings omitted -->

 <query name="hqlOlderQuery">
 <![CDATA[select std.age from Student std where std.age > :age]]>
 </query>

 <sql-query name="sqlOlderQuery">
 <return-scalar column="age" type="double"/>
 <![CDATA[select std.age from Student as std where std.age>:
 age]]>
 </sql-query>
 </class>
</hibernate-mapping>

As you can see, the <sql-query> element comes with a nested element, called
<return-scalar>. This element tells Hibernate the type of data it expects to
receive when the SQL query executes. This element is not used with HQL query
definitions, since Hibernate parses the HQL queries and discovers the query
execution's result type.

The <return-scalar> element comes with two attributes, column and type, which
specify the name of the selected column and its SQL type, respectively.

You should define the SQL or HQL queries inside a CDATA section
if the query contains XML markup. Doing so maintains the integrity
of the XML, and ensures that the XML parser can always process the
query during development and maintenance.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[216]

It is also possible to define named queries through JPA annotations. For this purpose,
JPA provides @NamedQuery and @NamedNativeQuery annotations, located in the
javax.persistence package, to define named queries inside the Java code. The
following code snippet shows an example of using the @NameQuery annotation to
define a named query:

package com.packtpub.springhibernate.ch09;

import ...;

@NamedQueries({
 @NamedQuery(
 name = "hqlOlderQuery",
 query = "select std.age from Student std where std.age>:age"
),
 ...
})
@Entity
public class Student { ... }

Every named query is called by its name, defined by the name attribute for that query
in the mapping file. To execute a named query, first call the getNamedQuery() of
the Session instance with the specified named query and obtain a Query object. The
Query instance can then be used as usual to execute the query and fetch the result.
For example, to execute the previous queries, use the following snippets:

//executing the name HQL query
Query hqlQuery = session.getNamedQuery("hqlOlderQuery");
hqlQuery.setDouble("age", 20);
List r1 = hqlQuery.list();

//executing the name SQL query
Query sqlQuery = session.getNamedQuery("sqlOlderQuery");
sqlQuery.setDouble("age", 20);
List r2 = sqlQuery.list();

To execute a JPA named query, we need to use code similar to the above, but with
the java.persistence.EntityManager and javax.persistence.Query interfaces,
as follows:

Query query = entityManager.createNamedQuery("hqlOlderQuery");
query.setParameter("age", 20);
List result = query.getResultList();

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[217]

Using the Criteria API
The Criteria API is another approach to querying persistent objects. This API
lets us build query expressions programmatically through Java objects. It provides
compile-time syntax checking, rather than runtime processing (which is provided
by HQL).

The Criteria API provides a unique Query By Example (QBE) functionality that is
not provided by other query approaches. Using QBE, you can create an instance of
the queried class, and set the instance's properties with the values that you want the
result to have. The result of the query is all persistent objects that match the instance.

In general, the Criteria approach is less flexible and less powerful than HQL. Criteria
queries are less readable and harder to understand than HQL queries. Typically,
creating the right query with Criteria requires more effort. More importantly,
Criteria queries cannot be declared in the mapping metadata, as HQL queries
can. This may increase maintenance problems.

Although HQL and Criteria queries are interchangeable, in some situations one is
more fitting than the other. For instance, when query restrictions are constructed
from user input, or when they change during application execution, it's better to
use the Criteria API to create a query expression. HQL expressions are simple string
literals whose syntax is checked at runtime, whereas the Criteria queries are Java
objects that naturally are checked at compile time. Therefore, manipulating the
string query expressions which are constructed from the user input, which might
fail in some conditions, would be painful. Using Criteria, you can create nested,
structured query expressions based on the data input by a user, which is a more
convenient approach.

Using a simple Criteria
Using the Criteria API involves the org.hibernate.Criteria and org.
hibernate.criterion.Criterion interfaces and the org.hibernate.criterion.
Restrictions class. Each query is presented with a Criteria object, and any
restriction on the query is indicated with an object of Criterion. Because Criteria
and Criterion are interfaces and cannot be instantiated, session objects and the
Restrictions class serve as factories for them.

To create a Criteria query, call the createCriteria() method of the Session
instance. This method takes a java.lang.Class as an argument, which determines
the persistent class you are going to query, and returns an object of type Criteria.
Here is an example of querying Teacher instances persistent in the database:

Criteria criteria = session.createCriteria(Teacher.class);

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[218]

The Criteria interface is analogous to the Query interface in HQL. Both
interfaces have a list() method which returns the query result as an object
of type java.util.List. You can then iterate over the result to retrieve each
restrictions-matched object:

List results = criteria.list();
Iterator itr = results.iterator();
while (itr.hasNext()) {
 Teacher teacher = (Teacher) itr.next();
}

However, in most situations, you need to retrieve a subset of objects that satisfy a
set of restrictions, instead of all persistent objects of one type. The Criteria API lets
you express restrictions with nested, structured Criterion objects. The Criterion
instances are added in a tree-like structure to express query restrictions.

To create a Criterion instance, call the appropriate factory method of the
Restrictions class. The Restrictions class provides many static methods to
create different Criterion objects with different restrictions. Each Criterion object
represents a specific restriction that corresponds to the factory method that is called
for creating that object. For instance, the eq() method is used to create an equal
restriction. Here is an example:

Criterion criterion = Restrictions.eq("firstName","Edward");

In this example, the criterion object indicates that the firstName property must
have "Edward" as its value.

Next, associate the Criterion object with the Criteria instance through the
Criteria object's add() method:

Criteria criteria = session.createCriteria(Teacher.class);
Criterion criterion = Restrictions.eq("firstName","Edward");
criteria.add(criterion);
List results = criteria.list();

Looking at the Restrictions class's factory
methods
As mentioned earlier, the Restrictions class provides many static methods which
express a wide range of restrictions for queries. Let's explore these methods and look
at examples to see how to use them.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[219]

Equality restrictions
We use the eq() and ne() methods to restrict a particular property of objects to have
or not to have a particular value. Here is the syntax of each:

public static SimpleExpression eq(String propertyName, Object
propertyValue)
public static SimpleExpression ne(String propertyName, Object
propertyValue)

Both methods return an object of type SimpleExpression, which is an implemented
class of Criterion. The first method constructs an equality restriction, which
determines that the propertyName of the desired objects must have the value
propertyValue.

For example, the following snippet obtains all Student objects whose firstName
property has the value "Edward":

Criteria criteria = session.createCriteria(Student.class);
criteria.add(Restrictions.eq("firstName","Edward"));
List results = criteria.list();

In contrast to eq(), the ne() method specifies inequality. It determines that the
propertyName of the desired objects must not have the propertyValue value. The
following snippet retrieves all Student objects whose firstName property value
differs from "Edward":

Criteria criteria = session.createCriteria(Student.class);
criteria.add(Restrictions.ne("firstName","Edward"));
List results = criteria.list();

Note that these methods cannot be used to retrieve objects with a property of null
or not-null values. As you will see, the isNull()or isNotNull() methods are used
instead. If the value to which the restrictions apply is calculated dynamically by a
process in the application, or is entered by the user, you must control the values and
prevent nulls in advance.

In addition to these methods, the Restrictions class provides the allEq() method
to select objects with several properties that have particular values, so it's like an
AND operation (discussed later in this chapter). This method's syntax is as follows:

public static Criterion allEq(Map properties)

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[220]

This method takes a parameter of type java.util.Map. The keys in the map specify
the property names we want to constrain, and the values in the map indicate the
corresponding values for those properties. Here is an example of this method:

Map map = new HashMap();
map.put("firstName", "John");
map.put("lastName", "Robinston");
map.put("age", new Double(19));
Criteria criteria = session.createCriteria(Student.class);
criteria.add(Restrictions.allEq(map));
List results = criteria.list();

The results object contains all Student objects with a firstName of "John",
lastName of "Robinston", and age of 19.

Null and empty restrictions
The isNull()and isNotNull() methods select persistent objects that have a
particular property that is null or is not null, respectively:

public static Criterion isNull(String property)
public static Criterion isNotNull(String property)

For instance, the following snippet selects Student objects whose middle names
are null:

Criteria criteria = session.createCriteria(Student.class);
criteria.add(Restrictions.isNull("middleName"));
List results = criteria.list();

Besides the null restrictions, two other methods provided by the Restrictions class
constrain an object property to be empty or not empty:

public static Criterion isEmpty(String property)
public static Criterion isNotEmpty(String property)

Likeness restrictions
We can retrieve all objects with a property that matches a given pattern. The
Restrictions class provides two methods for this purpose: like() and ilike().
The simplest forms of these methods are as follows:

public static SimpleExpression like(String propertyName, Object value)
public static SimpleExpression ilike(String propertyName, Object
value)

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[221]

Both like() and ilike() methods construct a likeness restriction that is
transformed into an SQL LIKE clause. The like() method cares about case, while
ilike() ignores case. The following snippet fetches all Student objects that have a
firstName starting with "Jo" (case doesn't matter):

Criteria criteria = session.createCriteria(Student.class);
criteria.add(Restrictions.ilike("firstName","Jo%"));
List results = criteria.list();

Note that we used the % character, which has the same meaning as in the SQL LIKE
clause, to match patterns in the string.

Two other forms of these methods are as follows:

public static SimpleExpression like(String propertyName,
 String value,
 MatchMode matchMode)
public static SimpleExpression ilike(String propertyName,
 String value,
 MatchMode matchMode)

These take an extra parameter of type org.hibernate.criterion.MatchMode,
which lets us specify how the persisted data must match the given pattern. The
MatchMode class is a type-safe enumeration with four static members, allowing
specification of four different matches:

ANYWHERE: Any part of the selected data may match the given pattern.
END: The end of the selected data must match the given pattern.
EXACT: The selected data must exactly match the given pattern.
START: The start of the selected data must match the given pattern.

The following snippet gets every Student object that has a firstName which
includes "bob", in which the matching operation does not care about case:

Criteria criteria = session.createCriteria(Student.class);
criteria.add(Restrictions.ilike("firstName","bob",
 MatchMode.ANYWHERE));
List results = criteria.list();

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[222]

Comparison restrictions
The Restrictions class provides several methods for constructing comparison
expressions. These methods select all objects that have a particular property that is
greater than, greater than or equal to, less than, less than or equal to, or between the
specified values, respectively:

public static SimpleExpression gt(String propertyName, Object
propveryValue)
public static SimpleExpression ge(String propertyName, Object
propertyValue)
public static SimpleExpression lt(String propertyName, Object
propertyValue)
public static SimpleExpression le(String propertyName, Object
propertyValue)
public static Criterion between(String propertyName, Object lowValue,
ObjecthighValue)

The following snippet shows how ge() can select all students whose ages are greater
than or equal to 25:

Criteria criteria = session.createCriteria(Student.class);
criteria.add(Restrictions.ge("age",new Integer(25)));
List results = criteria.list();

In addition to these methods, selecting objects by comparing their property values
with a specified value, the Restrictions class provides other methods that let us
select objects based on comparing of two properties values. The following code
shows these methods:

public static PropertyExpression eqProperty(String property1, Object
property2)
public static PropertyExpression leProperty(String property1, Object
property2)
public static PropertyExpression ltProperty(String property1, Object
property2)

These methods indicate, respectively, that two named properties must have the same
value, that the first named property is less than or equal to the second, and that the
first named property is less than the second.

For instance, the following snippet selects all customers whose deposits are less than
their credit:

Criteria criteria = session.createCriteria(Customer.class);
criteria.add(Restrictions.lt("deposit","credit"));
List results = criteria.list();

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[223]

Logical restrictions
You can combine Criterion objects to build a nested, structured query expression.
This means that a Criteria object may be constructed of more than one Criterion.
This is easy to demonstrate:

Criteria criteria = session.createCriteria(Student.class);
criteria.add(Restrictions.eq("firstName","John"));
criteria.add(Restrictions.ge("age",new Double(19)));
List results = criteria.list();

The results object contains all Student objects with the firstName "John", and an
age greater than or equal to 19.

When Criterion objects are added to the Criteria by the
add() method, the operation is interpreted as an AND.

The Restrictions class also provides the or() and and() methods. The or()
method builds a compound Criterion that satisfies one or both Criterion
restrictions. In contrast, the and() method builds a compound Criterion that
satisfies both Criterion restrictions. These methods are as follows:

public static LogicalExpression and(Criterion criterion1, Criterion
criterion2)
public static LogicalExpression or(Criterion criterion1, Criterion
criterion2)

The following snippet shows how to use or(), in which the selected objects must
either have "John" as their firstName, or be equal to or older than 19:

Criteria criteria = session.createCriteria(Student.class);
Criterion criterion1 = Restrictions.eq("firstName","John");
Criterion criterion2 = Restrictions.ge("age",new Double(19));
criteria.add(Restrictions.or(criterion1, criterion2));
List results = criteria.list();

In addition to AND and OR restrictions, the Restrictions class allows us to build a
negated Criterion through the not() method:

public static Criterion not(Criterion criterion)

For example, to load all students whose ages are not greater than and equal to 19
(that is, less than 19), the not() method can be used as follows:

Criteria criteria = session.createCriteria(Student.class);
Criterion criterion = Restrictions.ge("age",new Double(19));
criteria.add(Restrictions.not(criterion));
List results = criteria.list();

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[224]

Size restrictions
You may also use the sizeXx() methods to construct constraints using size
comparisons. These methods include the following:

public static Criterion sizeEq(String s, int i)
public static Criterion sizeNe(String s, int i)
public static Criterion sizeGt(String s, int i)
public static Criterion sizeLt(String s, int i)
public static Criterion sizeGe(String s, int i)
public static Criterion sizeLe(String s, int i)

The description of each size restrictions is as follows:

sizeEq: size equality
sizeNe: size not-equality
sizeGt: size greater than
sizeLt: size less than
sizeGe: size greater than or equal to
sizeLe: size less than or equal to

Disjunctions and conjunctions
If you want to create an OR expression with many Criterion objects, you can use an
instance of org.hibernate.criterion.Disjunction. Using this object is equivalent
to, but more convenient than, using several OR restrictions. To obtain a Disjunction
object, call the disjunction() method:

public static Disjunction disjunction()

If you want to create an AND expression with many criterion objects, you can use an
object of org.hibernate.criterion.Conjunction. The conjunction() method
returns a Conjunction object as follows:

public static Conjunction conjunction()

The Disjunction class and the Conjunction class provide add() methods to apply
an OR or an AND, respectively, between the criteria.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[225]

The following code uses a conjunction object to construct an AND expression:

Criteria criteria = session.createCriteria(Student.class);
Criterion age = Restrictions.gt("age",new Double(25.0));
Criterion firstName = Restrictions.like("firstName","John%");
Conjunction conjunction = Restrictions.conjunction();
conjunction.add(age);
conjunction.add(firstName);
criteria.add(conjunction);
List results = criteria.list();

SQL restrictions
SQL restrictions are useful when you need to use an SQL clause that is not
supported by Hibernate through the Criteria query API. Different methods in
the Restrictions class construct this type of restriction:

public static Criterion sqlRestriction(String)
public static Criterion sqlRestriction(String, Object, Type)
public static Criterion sqlRestriction(String, Object[], Type[])

The first form of the method only takes a String parameter, indicating the
SQL restriction. The other forms are useful when the SQL restriction includes
JDBC parameters (?). The extra arguments determine the value(s) and type(s)
of the parameters.

The following snippet shows how to use this method to create an SQL restriction:

Criteria criteria = session.createCriteria(Student.class);
criteria.add(Restrictions.sqlRestriction("{alias}.FIRST_NAME like
‘John%'"));
List results = criteria.list();

{alias} and FIRST_NAME refer, respectively, to the table and a column in that table
that store the Student objects, and the firstName property of the Student objects.

Query By Example (QBE)
Hibernate lets us create an example instance of a persistent class and set properties
of the instance with the desired values, and then use the sample instance to retrieve
all persistent instances in the database that match the properties of the example
instance. This functionality, called Query By Example (QBE), provides much flexibility
in development, and produces cleaner, neater, and more testable code.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[226]

QBE is provided by org.hibernate.criterion.Example as a subclass of
Criterion. To use QBE, create an example instance of the persistent class and set
the desired values. Then, use the create() method of Example to create an Example
instance. Use the Example instance in your Criteria construction to find the
matches. Look at this example:

Criteria criteria = session.createCriteria(Student.class);
Student student= new Student();
student.setFirstName("John");
Example example = Example.create(student);
criteria.add(example);
List results = criteria.list();

The results list contains all persistent Students whose firstName is John. Note
that Hibernate only takes care of the firstName field, ignoring others that were
not set. However, it is possible to configure the Example instance to indicate how
Hibernate should examine the property values to create a query. The methods of the
Example instance are used for this purpose. The following table summarizes some of
these methods:

Method Description
static Example create(java.lang.
Object persistentObject)

Creates a new instance of the Example class,
which identifies all persistent instances in
the database that match non-null properties
of the persistentObject.

Example enableLike() Enables Hibernate to use the like
operator when it finds matches for
String properties.

Example enableLike(MatchMode
matchMode)

Indicates that Hibernate must use the
like operator to find matches that occur
in particular area: MatchMode.START,
MatchMode.END, MatchMode.ANYWHERE,
and MatchMode.EXACT. (See the Likeness
Restrictions section for more information.)

Example excludeNone() Determines that properties with zero or null
values should also be used when matches
are found.

Example excludeProperty(String
propertyName)

Excludes a particular named property when
finding matches.

Example excludeZeros() Excludes properties with zero values when
finding matches.

Example ignoreCase() Determines that Hibernate must ignore
the case of String properties when
finding matches.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[227]

The following code illustrates these methods:

Criteria criteria = session.createCriteria(Student.class);
Student student = new Student();
student.setFirstName("Bob");
Example example = Example.create(student);
example.ignoreCase();
example.enableLike(MatchMode.ANYWHERE);
criteria.add(example);
List results = criteria.list();

This example retrieves all Student instances whose firstName includes the string
"bob", regardless of case.

Paging the query result
Often, a huge number of persistent objects satisfies your query restrictions. This
means that many rows of the database are selected, and a large number of objects
are loaded in memory when the query is executed. Two problems arise:

Loading a large set of data in memory affects the application's performance.
It may not be possible to show the entire set of data in the user interface.
Even if this is possible, application users do not want to view the entire result
in a single page.

In these situations, you can use a pagination technique to load and show only a
subset of data, rather than all of it. The user interface that shows the data allows the
user to navigate to the next and previous subsets of data.

In Hibernate, the Query and Criteria interfaces both provide the setFirstResult()
and setMaxResults() methods to implement the pagination technique. The
setFirstResult() method allows us to specify the starting point of the bounds
(that is, the first row in the result set to load) using a zero-based index. The
setMaxResults() method determines the maximum number of objects that
you expect to load. Note that the pagination technique applies to Query and
Criteria objects, and does not affect HQL query expressions or the Criteria
construction process.

Here is an example of using Hibernate pagination when loading objects of
type Teacher:

Query query = session.createQuery("from Teacher");
query.setFirstResult(10);
query.setMaxResults(20);
List teachers = query.list();

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[228]

This snippet retrieves 20 Teacher instances, starting from row 11 and finishing with
row 30. You can use the returned value of the list() method normally, as when the
pagination technique is not used. To load the next page of the query result, set up
the Query instance with the first result 30, and the max result 20, and then execute
query again.

In addition to the setFirstResult() and setMaxResults() methods, the Query
and Criteria interfaces both provide the uniqueResult() method, which is useful
for retrieving the query result when the result set contains only one object:

String hql = "from Teacher where phoneNumber = ‘+98-912-3456789'";
Query query = session.createQuery(hql);
query.setMaxResults(1);
Teacher teacher = (Teacher)query.uniqueResult();

If the result set contains more than one object, calling this method will
throw org.hibernate.NonUniqueResultException. Note that we used
query.setMaxResults(1) to retrieve only one object from the database, even
if more than one object exists, so we prevented a possible exception throwing.

The following code shows how pagination is applied to a Criteria object:

Criteria criteria = session.createCriteria(Teacher.class);
Criterion criterion = Restrictions.eq("phoneNumber","+98-912-
3456789");
criteria.add(criterion);
criteria.setFirstResult(1);
criteria.setMaxResults(10);
List results = criteria.list();

The pagination is applicable in JPA through the setFirstResult(),
setMaxResults(), and getSingleResult() methods provided by the
javax.persistence.Query interface. setFirstResult() and setMaxResults()
specify the bounds of the retrieved objects. The getSingleResult() method works
similarly to uniqueResult() in native Hibernate API, but throws an exception
whether the result is empty, or there is more than one result. The following shows
an example of JPA pagination support:

String jpaQL = "from Teacher where phoneNumber = ‘+98-912-3456789'";
javax.persistence.Query query =
 entityManager.createQuery(jpaQL);
query.setMaxResults(1);
Teacher teacher = query.getUniqueResult();

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 9

[229]

You can find much similarity between JPA and Hibernate native API in the code
snippet above.

Logging the Hibernate-Generated SQL
In some situations, using an HQL or Criteria query may not provide what you
want, or you may not know how changing the HQL or Criteria query will affect
results. In such cases, you can configure Hibernate to show the generated SQL in a
log file, or in the application console. A query analyzer can then trace or analyze the
generated SQL.

The simplest way to show the generated SQL is by setting hibernate.show_sql in
the configuration properties file, or show_sql in the configuration XML file, with
true. You can also forward the generated SQL in the log files by setting up Log4j to
debug. Besides, there are specific categories for the SQL log output, providing full
control on the SQL logging. To learn more about logging in Hibernate, look at this
book's Appendix, or at the Hibernate website:

http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/
#configuration-logging

Summary
In this chapter, we discussed querying in Hibernate. Hibernate provides three
distinct ways to query the persistent objects: HQL, native SQL, and the Criteria API.

HQL is an SQL-like language that, unlike SQL (which works on raw data in the
database), lets us express queries in an object-oriented form. Like SQL, HQL is not
case-sensitive, but Java-related words, such as class and property names, should
appear in the correct case.

The simplest form of HQL starts with a from clause. A where clause can be added to
the end of a from clause to restrict the query with constraints.

Hibernate lets us query persistent objects with native SQL. To execute a native
SQL query, you can pass the query expression to the createSQLQuery() method
of Session and obtain a org.hibernate.SQLQuery object. You can then treat the
SQLQuery instance like the Query instance in HQL. Using native SQL bypasses some
Hibernate benefits, such as caching, so using native SQL is not recommended.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Querying In Hibernate

[230]

The Criteria API offers another approach to querying objects. This API lets you
express the desired query programmatically. The core interfaces inside this API
are Criteria and Criterion. Each Criteria object specifies a query expression,
which may consist of an arbitrary number of Criterion objects, each one referring
to a restriction. The Criteria object is obtained through a Session object, and each
Criterion is constructed by the Restrictions class, which acts as a factory for
all Criterion.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control
with Spring

Welcome to Chapter 10, where you will start developing with Spring. This chapter
introduces the Inversion of Control (IoC) pattern and discusses how Spring
provides IoC at the heart of its framework. Chapter 1 had a quick discussion about
IoC and its motivation. In that chapter, you learned why we are interested in IoC and
how it allows us to create more manageable and maintainable code. Also, Chapter 3
gave you a simple example of using IoC.

As those chapters discussed, IoC is about application objects. It aims to provide
a simple mechanism for managing application objects and their dependencies.
With IoC, the application itself is not responsible for obtaining required objects.
Instead, Spring (or any other IoC framework) is configured to provide them for the
application. Using IoC involves two activities:

Defining object relations in terms of Java interfaces or abstract classes.
Calling an outside object, called an IoC container (in our case, Spring), to
instantiate objects, provide them where they are needed, and manage their
life cycles.

Objects configured with IoC are not required to have dependencies on the container
itself. They are also not required to be aware of the concrete classes of their
relationships or how to locate them.

In contrast to many other features of Spring, which are dedicated to a
particular layer of application architecture, IoC is a general and extensive
concept that may appear in any area of application architecture.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[232]

In this chapter, you will learn more about IoC and its flavor of dependency injection.
You will learn how Spring is configured and used as an IoC container for application
objects. You will also learn about beans, which are the objects managed by the Spring
IoC container, as well as bean factories and application context (the Spring IoC
functionality for managing these beans).

IoC is not a Spring-specific concept. Instead, it's based on Java language
structures. Spring (or any other IoC container) merely provides a
framework to develop IoC-style code, and allows us to configure
application objects and their relations in an IoC fashion through XML,
instantiate objects, and construct object graphs at runtime.

First, let's discuss what the term Inversion of Control means.

Inversion of Control and dependency
injection
At the lowest level, Java applications consist of Java interfaces and classes. These
classes and interfaces make up the application components, which interact with
each other to provide services and accomplish the application's job. These objects are
dependent on each other, and we call an object dependent if it uses other objects to do
its job. In this case, all of the other objects that are used by the object are called the
object's dependencies. The following figure shows a dependency relationship between
objects A and B:

<<uses>>A
<<Dependant>>

B
<<Dependancy>>

Dependency push versus dependency pull
It is said that an object pulls its dependencies if the object itself is responsible
for providing its dependencies from its environment. The object may do this by
instantiating dependencies, or by looking up an outside object for them, as the
following figure illustrates:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[233]

A A
<<Dependant>> <<Dependant>>

B B
<<Dependancy>> <<Dependancy>>

1. look up

Outside
(Container)

2. Instantiate

instantiates

3. Use

Pulling dependencies is the traditional object configuration normally used in
non-IoC-style code.

Most of the time, a common design pattern called Service Locator, is
used with the pulling approach. A service locator object intermediates
the dependant and the container, hides the complexities of interacting
with the container, and provides a single point of control. Sometimes it
improves performance by providing a caching mechanism.

In contrast, the object may be free from providing its dependencies. Instead,
another object is responsible for providing dependencies and pushes them into the
object. This type of object provision, illustrated in the following figure, is called
dependency pushing:

A
<<Dependant>>

B
<<Dependancy>>

2. Push

Outside
(Container)

1. Instantiate

3. Use

In this push strategy, object A no longer takes care of dependency creation, and the
container injects the dependency into the dependent.

As its name implies, Inversion of Control indicates inverting the control
of object instantiations. IoC lets us move control from dependents to the
container and provide dependents with the dependencies they need.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[234]

Dependency injection
Generally, externalizing object creation and management is called Inversion of
Control, but in practice, different approaches can implement IoC. The type shown in
the previous figure is a particular type of IoC, in which dependencies are injected by
the container to the dependent object. This is formally known as dependency injection.

Martin Fowler calls IoC dependency injection when the dependencies
are provided by a container and injected into dependents. Therefore,
dependency injection is a specific form of IoC, in which the dependencies
are provided by a container.

Because it decouples the application code meaningfully, IoC allows the creation of
more manageable and testable code.

Inversion of Control in Spring
Spring supports IoC at its core. All other features of Spring, such as AOP, the web
framework, transaction management, and so on, run on its lightweight IoC container.
This means that you are always involved with the Spring IoC, even if you are using
another feature of the Spring framework.

Let's continue our discussion with an example application and see how it can be
implemented with non-IoC-style code. We'll then apply IoC to the application code
to see how Spring's IoC capabilities decouple application classes and solve the
dependency problem.

Application definition
Suppose the application uses a class as a notification service to notify the system
administrator when a fatal problem occurs inside the system. The notification service
may use either an email notifier or an SMS notifier to report the problem.

Implementing non-IoC-style code
The notification system's class diagram is shown in the following diagram. In
this diagram, note that Client is a typical class in the application, using the
notification service:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[235]

Client
<<uses>>

<<uses>>

<<uses>>

NotificationService

SMSNotifier

EmailNotifier

As the previous figure shows, any client can call the NotificationService
class. Consequently, NotificationService may choose either EmailNotifier
or SMSNotifier, based on the administrator's preference, to report the problem.
In this example, the Client class is dependent on NotificationService, and
NotificationService is dependent on EmailNotifier or SMSNotifier. The
following code shows the EmailNotifier class:

package com.packtpub.springhibernate.ch10;

public class EmailNotifier {

 public void notify(String text) throws NotifyException {
 //sending text as an email to the administrator
 }
}

And this is the SMSNotifier class:

package com.packtpub.springhibernate.ch10;

public class SMSNotifier {

 public void notify(String text) throws NotifyException {
 //sending text as a SMS
 }
}

And here is the NotificationService class:

package com.packtpub.springhibernate.ch10;

public class NotificationService {
 EmailNotifier notifier = new EmailNotifier();
 boolean retryOnFail = true;

 public void notify(String message) throws ServiceException {
 try {
 notifier.notify(message);
 } catch(NotifyException e) {
 if(retryOnFail) {
 //notifying again

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[236]

 notify(message);
 } else {
 throw new ServiceException(e);
 }
 }
 }
}

These classes use the specialized exception classes; ServiceException and
NotifyException extend RuntimeException.

Now, any client may use code such as the following to notify the administrator:

try {
 NotificationService ns = new NotificationService();
 String msg = "A message indicating "+
 " a fatal error inside the system...";
 ns.notify(msg);
} catch(ServiceException e) {
 //handling exception
}

NotificationService uses an instance of Notifier to notify the administrator. The
NotificationService class directly instantiates a known types of Notifier, in this
case, it is the EmailNotifer. As a result, NotificationService has a dependency
on both the Notifier interface and a specific implementation class: if we want to
change the notification strategy, we need to change the NotificationService class.

The same problem exists for the client, since this class directly uses a specific type of
NotificationService, with no possibility of specialization.

Let's discuss how these dependencies can be eliminated when the IoC pattern is
applied to the code.

Applying IoC
To apply IoC, and see how the object relationships change when they use IoC, we
split up NotificationService into the NotificationServiceImpl class and
the NotificationService interface. This interface exposes the functionality of
the concrete notification class, NotificationServiceImpl. We also define the
functionality of the two other classes, EmailNotifer and SMSNotifier, through
another interface, Notifier.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[237]

We now have a class diagram, shown in the following figure, in which
both EmailNotifer and SMSNotifier implement Notifier and
NotificationServiceImpl implements NotificationService. The Client
and NotificationServiceImpl classes use instances of interfaces, instead of the
concrete implementations. Both the Client and the NotificationServiceImpl
classes use these instances to interact to the target classes without instantiating them:

<<uses>>

Client
<<uses>>

<<uses>>

<<uses>>

<<uses>>

NotificationService

NotificationServiceImpl

SMSNotifier

EmailNotifier

Notifier

<<implements>>

<<implements>>

<<implements>>

At this time, we still have the option of using either the pull strategy, allowing each
object to provide its dependencies itself by instantiating them or by looking up
the container to obtain a prepared one, or the push strategy, letting the container
create the dependencies and then push them to the dependents. The following code
implements the traditional pull strategy.

The Notifier interface remains unchanged as follows:

package com.packtpub.springhibernate.ch10;

public interface Notifier {
 public void notify(String text) throws NotifyException;
}

The EmailNotifier implements Notifier as follows:

package com.packtpub.springhibernate.ch10;

public class EmailNotifier implements Notifier {

 public void notify(String text) throws NotifyException {
 //sending text as an email to the administrator
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[238]

The SMSNotifier class is similar to EmailNotifier, as follows:

package com.packtpub.springhibernate.ch10;

public class SMSNotifier implements Notifier{

 public void notify(String text) throws NotifyException {
 //sending text as a SMS
 }
}

The NotificationService outlines the service class, as shown in the following code:

package com.packtpub.springhibernate.ch10;

public interface NotificationService {

 public void notify(String message) throws ServiceException;
}

And NotificationServiceImpl implements NotificationService as follows:

package com.packtpub.springhibernate.ch10;

public class NotificationServiceImpl implements NotificationService {
 Notifier notifier = new EmailNotifier();
 boolean retryOnFail = true;

 public void notify(String message) throws ServiceException {
 try {
 notifier.notify(message);
 } catch(NotifyException e) {
 if(retryOnFail) {
 //notifying again
 notify(message);
 } else {
 throw new ServiceException(e);
 }
 }
 }
}

We can now apply IoC to our class diagram. In practice, there are different types
of IoC:

Setter injection: The IoC container uses the dependents' JavaBean setter
methods to provide dependencies for them.
Constructor injection: The IoC container uses constructor parameters to
provide dependencies.
Method injection: The IoC container implements an abstract method in the
dependents at runtime to provide dependencies for them.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[239]

The next sections discuss the different types of IoC and how they are implemented
in Spring.

Setter injection
Setter injection is the most common type of IoC, in which the container injects
dependencies through the dependent objects' JavaBean setter methods. In this
approach, the implementation class only uses instances of interfaces, without directly
instantiating the concrete classes. The dependents must contain JavaBean setter
methods for their dependencies, by which the container can inject the appropriate
implementation object. Note that no interfaces change. The following code shows the
setter-based, IoC-style code for the NotificationServiceImpl class:

package com.packtpub.springhibernate.ch10;

public class NotificationServiceImpl implements NotificationService {
 Notifier notifier;
 boolean retryOnFail;

 public void notify(String message) throws ServiceException {
 try{
 notifier.notify(message);
 } catch(NotifyException e) {
 if(retryOnFail) {
 //notifying again
 notify(message);
 } else {
 throw new ServiceException(e);
 }
 }
 }

 public void setNotifier(Notifier notifier) {

 this.notifier = notifier;

 }

 public void setRetryOnFail(boolean retryOnFail) {

 this.retryOnFail = retryOnFail;

 }

}

Next, we need to configure object dependencies through the IoC configuration file.
This file can be either an XML or a properties file.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[240]

The following code shows the XML configuration for our example:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 spring-beans-2.5.xsd">
 <bean id="notificationService"
 class="com.packtpub.springhibernate.ch10.
 NotificationServiceImpl">
 <property name="notifier">
 <ref local="notifier"/>
 </property>
 <property name="retryOnFail">
 <value>true</value>
 </property>
 </bean>

 <bean id="notifier"
 class="com.packtpub.springhibernate.ch10.EmailNotifier">
 </bean>
</beans>

The <bean> elements describe objects managed by the IoC container. Each <bean>
element takes two attributes, id and class, referring to the name by which that
object is identified and the concrete class of the object, respectively. In our example,
we have used two <bean> elements: one for the notification service and another
one for the notifier. For notificationServiceImpl, we used a nested <property>
element to determine that the notifier property of this object should be set to an
instance of the notifier bean, which is defined through another <bean> element.
Note that we used the <ref> element to refer to another object, notifier, defined
elsewhere in the XML configuration file. This definition expresses that Spring
should instantiate the NotificationServiceImpl class when necessary, and
wire it together with an instance of the EmailNotifier.

At this point, we need to start up the container to obtain the desired objects. The
IoC container in Spring is called a bean factory. Spring provides different bean
factories, all as an implementation of org.springframework.beans.factory.
BeanFactory, or any extensions of this interface. Generally, a bean factory creates
objects, wires the objects together, and manages the objects' life cycles. To start
up the container, you need to create and configure an object of an appropriate
bean factory. In our case, we'll use org.springframework.context.support.
ClassPathXmlApplicationContext, a subinterface of BeanFactory, which
reads object configurations in XML format from the classpath.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[241]

Now, to use an IoC-managed object, you only need to start up the container and
obtain the object as follows:

try {
 ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "com/packtpub/springhibernate/ch10/beans.xml");
 NotificationService ns =
 (NotificationService)ctx.getBean("notificationService");
 ns.notify("A message indicating a fatal error inside the system...");
} catch(ServiceException e) {
 //handling exception
}

The ClassPathXmlApplicationContext class takes the path of the beans.xml file in
the application classpath. To obtain a configured object from the IoC container, you
need to call the getBean() method of ClassPathXmlApplicationContext with the
object identifier, which we have already defined through the <bean> element, as this
method's argument.

Now, the object of NotificationService is created, configured, and managed by
the IoC container. All object dependencies have been defined in terms of interfaces.
No object is aware of the actual implementation of its dependencies. The client
code does not care about the implementation details of NotificationService,
nor does NotificationServiceImpl know about the implementation details
of Notifier. This isolates the client code from the implementation details of
NotificationService, and NotificationServiceImpl from the implementation
details of Notifier. It consequently lets us switch the implementation of each object
to any other implementation, without making any changes in the application code,
merely by changing the XML configuration file.

Constructor injection
Constructor injection, another type of IoC, is used less frequently than setter
injection. In this technique, dependencies are supplied to an object through that
object's constructor. The following code shows the NotificationServiceImpl class,
which has changed to use constructor injection instead of setter injection:

package com.packtpub.springhibernate.ch10;

public class NotificationServiceImpl implements NotificationService {
 Notifier notifier ;
 boolean retryOnFail;

 public NotificationService(Notifier notifier,
 boolean retryOnFail) {
 this.notifier= notifier;

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[242]

 this.retryOnFail = retryOnFail;
 }

 public void notify(String message) throws ServiceException {
 try {
 notifier.notify(message);
 } catch(NotifyException e) {
 if(retryOnFail) {
 //notifying again
 notify(message);
 } else {
 throw new ServiceException(e);
 }
 }
 }
}

As with setter injection, no interface has changed.

As you can see, we have replaced the setter method with a constructor in the
NotificationServiceImpl class, which takes two arguments of Notifier and
boolean, respectively. After that, the application context configuration needs to be
modified so that an object of Notifier and a boolean value for retryOnFail are
used as an argument of the NotificationServiceImpl constructor, as shown in the
following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
2.5.xsd">
 <bean id="notificationService"
 class="com.packtpub.springhibernate.ch10.
NotificationServiceImpl">
 <constructor-arg>
 <ref local="notifier"/>
 </constructor-arg>
 <constructor-arg>
 <value>true</value>
 </constructor-arg>
 </bean>
 <bean id="notifier"
 class="com.packtpub.springhibernate.ch10.EmailNotifier">
 </bean>
</beans>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[243]

The Client class that uses notificationServiceImpl remains unchanged:

try {
 ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "com/packtpub/springhibernate/ch10/beans.xml");
 NotificationService ns =
 (NotificationService)ctx.getBean("notificationService");
 ns.notify("A message indicating a fatal error inside the system...");
} catch(ServiceException e) {
 //handle exception
}

It is highly recommended that you use the <constructor-arg> element with either
the index or the type attribute. When you don't use these attributes, Spring finds
a matching bean for each argument based on the type of that argument. Therefore,
when there are some arguments with the same type, or when there are arguments with
values specified with string literals that are converted automatically by Spring, failure
to use these attributes results in ambiguity about which argument you intend. Using
these attributes can avoid mistakes in the development and maintenance phases.

For example, suppose that the NotificationServiceImpl class uses an extra
property called prefixMessage. As with notifier and retryOnFail, the
prefixMessage property is set through the IoC container. The following code
shows the modified NotificationServiceImpl class:

package com.packtpub.springhibernate.ch10;

public class NotificationServiceImpl implements NotificationService {
 Notifier notifier ;
 String prefixMessage;
 boolean retryOnFail;

 public NotificationServiceImpl(Notifier notifier,
 String prefixMessage,
 boolean retryOnFail) {
 this.notifier= notifier;
 this.prefixMessage = prefixMessage;
 this.retryOnFail = retryOnFail;
 }

 public void notify(String message) throws ServiceException {
 String message2Send = prefixMessage +" "+ message;
 try {
 notifier.notify(message2Send);
 } catch(NotifyException e) {
 if(retryOnFail) {
 //notifying again
 notify(message2Send);
 } else {

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[244]

 throw new ServiceException(e);
 }
 }
 }
}

If we use constructor injection for this property, and the <value> tag to supply the
value for its argument, Spring may not distinguish the prefixMessage value from
the retryOnFail value because both prefixMessage and retryOnFail values are
expressed through string literals. You must use either the type or the index attribute
to give Spring accurate information about the argument type or order, respectively.
For our example, the bean definitions are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 spring-beans-2.5.xsd">
 <bean id="notificationService"
 class="com.packtpub.springhibernate.ch10.
 NotificationServiceImpl">
 <constructor-arg index="0">
 <ref local="notifier"/>
 </constructor-arg>
 <constructor-arg index="1">
 <value>under-test</value>
 </constructor-arg>
 <constructor-arg index="2">
 <value>true</value>
 </constructor-arg>
 </bean>
 <bean id="notifier"
 class="com.packtpub.springhibernate.ch10.EmailNotifier">
 </bean>
</beans>

Here, the index attribute determines that the notifier, prefixMessage, and
retryOnFail are the first, second, and third arguments, respectively, of the class
constructor. As you can see, the index starts from 0. Therefore, the first argument in
the argument list, notifier in this case, is specified with index="0". Alternatively,
we can use the type attribute to specify the type of each constructor argument, and
let Spring pass the value to the proper constructor argument based on its type:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[245]

 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 spring-beans-2.5.xsd">
 <bean id="notificationService"
 class="com.packtpub.springhibernate.ch10.
 NotificationServiceImpl">
 <constructor-arg type="com.packtpub.springhibernate.ch10.
 Notifier">
 <ref local="notifier"/>
 </constructor-arg>
 <constructor-arg type="java.lang.String">
 <value>under-test</value>
 </constructor-arg>
 <constructor-arg type="boolean">
 <value>true</value>
 </constructor-arg>
 </bean>
 <bean id="notifier"
 class="com.packtpub.springhibernate.ch10.EmailNotifier">
 </bean>
</beans>

If you are developing from scratch, there is actually no difference between
setter injection and constructor injection. However, when you are using
existing classes, your choice depends on the classes that IoC is applied
to. In simple words, you need to use setter injection for classes that have
no-argument constructors with simple javabean properties, and you need
to use constructor injection for classes that are completely initialized
through their constructors. For classes that are initialized with the
combination of constructors and setter methods, you need to use
mixed approaches.

Method injection
Method injection is another type of dependency injection. With method injection,
instead of defining a property dependency to be set by the container, we define an
abstract method which the container implements at runtime. This abstract method
returns an implementation of the dependency object. Therefore, the dependent class
can use the abstract method to access the appropriate implementation object on the
assumption that the container will implement the method at runtime.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[246]

When our example uses method injection to provide a Notifier implementation
for the NotificationServiceImpl, the injection is done through an abstract
getNotifier() method and allows the NotificationServiceImpl use this
method to access the Notifier implementation. The configuration file changes
accordingly to indicate that the container should override the method and provide
an appropriate implementation object as the method return value. The following
code shows the NotificationServiceImpl class:

package com.packtpub.springhibernate.ch10;

public abstract class NotificationServiceImpl implements
NotificationService {
 public abstract Notifier getNotifier();
 boolean retryOnFail;

 public void notify(String message) throws ServiceException {
 try {
 getNotifier().notify(message);
 } catch(NotifyException e) {
 if(retryOnFail) {
 //notifying again
 notify(message);
 } else {
 throw new ServiceException(e);
 }
 }
 }

 public void setRetryOnFail(boolean retryOnFail) {
 this.retryOnFail = retryOnFail;
 }
}

The getNotifier() method can be moved in the NotificationService interface.
However, I intentionally put it in this class to teach you how you can let Spring to
override an abstract method at runtime, regardless of whether the class implements
an interface or not.

Here is the beans.xml configuration file which uses the injection approach:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 spring-beans-2.5.xsd">
 <bean id="notificationService"
 class="com.packtpub.springhibernate.ch10.
 NotificationServiceImpl">
 <lookup-method name="getNotifier" bean="notifier"/>
 <property name="retryOnFail">

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[247]

 <value>true</value>
 </property>
 </bean>
 <bean id="notifier"
 class="com.packtpub.springhibernate.ch10.EmailNotifier">
 </bean>
</beans>

As you can see, a <lookup-method> element configures the notifier property to set
the method injection. This element uses two attributes, name and bean, which refer,
respectively, to the name of the abstract method and to the name of the property
that is initialized with method injection. In this example, the notifier property is
initialized through method injection, while retryOnFail is still set through setter
injection. Although it is possible to use method injection for retryOnFail, I have
done it this way because the retryOnFail property has a simple type and the
application only needs its value. No implementation is defined for this property.
The client remains unchanged.

Now that we've seen the different approaches to dependency injection, let's look
at object configuration details, exploring how Spring provides us flexibility in
configuring and initializing the objects, as well as in wiring them together.

Bean configuration
Bean configuration is at the heart of any Spring-based application. You may
configure Spring either programmatically (through application code), or
declaratively (through XML or properties files), as you will see later in this chapter.
We will focus on the XML approach, because other approaches are neither as flexible,
nor as powerful as using XML. The XML and properties files used as bean definitions
in the Spring IoC container are called the Spring application context, or just the
Spring context.

You have already seen some XML configuration files in the examples. Here, we'll dig
a bit deeper into XML bean definitions.

Spring XML configuration is started with the <beans> element as the root:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
2.5.xsd">
</beans>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[248]

The <beans> element introduces spring-beans-2.5.xsd, as the XML schema for
validation of the Spring bean configuration file.

Support for DTD-based configuration
The Spring framework version 1.x uses DTD for validation of the Spring
application context. Therefore, if you are working in Spring 1.x, you need
to configure the Spring context with the DOCTYPE declaration and the
<beans> element as follows:
 <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN 2.0//EN"
 "http://www.springframework.org/dtd/
 spring-beans-2.0.dtd">

 <beans>

 </beans>

Spring 2.x supports schema-based configuration, along with the classic
DTD-configuration approach. This means you can still use DTD with
Spring 2.x. However, you should use the schema variant to simplify the
configuration file and to use new features provided by Spring.

Any bean is defined with a <bean> element inside <beans>. Each <bean> element
includes all of the information the container needs to configure an object in an IoC
style, manage the object life cycle, and provide the object dependencies.

The <bean> element almost always comes with two attributes: id and class. The
id attribute assigns an arbitrary, unique name to the bean, by which the container
and other beans can refer to it. The class attribute determines the type of the bean
that is instantiated. Here is a sample bean definition, which you have already seen in
previous examples:

<bean id="notifier" class="com.packtpub.springhibernate.ch10.
EmailNotifier">
</bean>

In the simplest form, the <bean> element can come with just one
class attribute. In that form, the bean can only be initialized and
retrieved by its type.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[249]

Alternatively, you may use the name attribute instead of id. The main advantage of
using name is that you can use more than one ID for the bean, specified as a comma-
separated list. Moreover, the name attribute does not have id naming limitations,
such as starting with a letter followed by alphanumeric characters with no white
space. Here is an example:

 <bean name="notifier, emailNotifier"
 class="com.packtpub.springhibernate.ch10.EmailNotifier">
 </bean>

In this case, the EmailNotifier object can be referred to as either notifier or
emailNotifer.

Multiple IDs are useful when the application includes multiple bean definitions. This
commonly happens when the application consists of multiple modules and each
module needs its own bean definitions. To make bean definitions more expressive,
each module may name its beans with a specific prefix. By using multiple IDs for
shared beans, you can name these beans with more than one name. Each name
begins with a particular prefix associated with a particular bean definition.

Commonly, the container instantiates beans through their constructors. If the
constructor takes one or more arguments, use a nested <constructor-arg>
element to provide the required values for each argument. Here is an example:

 <bean name="notificationService"
 class="com.packtpub.springhibernate.ch10.
 NotificationServiceImpl">

 <constructor-arg>
 <ref local="notifier"/>
 </constructor-arg>
 </bean>

Optionally, you can tell Hibernate to use either a static factory method or a nonstatic
factory method as an instantiation approach.

You may use a static factory method of a class, instead of the class constructor, to
instantiate an object. To do so, use the factory-method and class attributes to
specify the factory method's name and class, respectively:

 <bean name="notifier"
 class="com.packtpub.springhibernate.ch10.NotifierFactory"

 factory-method="getNotifierInstance">

 </bean>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[250]

Alternatively, you may use a nonstatic factory method for creating a bean.
Obviously, the factory method is defined in another bean instance in the container.
Here is an example:

 <bean name="nonStaticNotifierFactory"...>
 </bean>

 <bean name="notifier, emailNotifier"
 factory-bean="nonStaticNotifierFactory"
 factory-method="getNotifierInstance">
 </bean>

As you can see, we have used the factory-bean attribute to refer to another bean
instance, including the factory method. Note that we have not specified the type of
the bean being instantiated in any of the cases so far.

Singleton versus prototype beans
Spring lets objects be configured as either singleton or nonsingleton. An object
is called a singleton if there is only a single instance of the class throughout the
application. In Spring, this means multiple invocations of ApplicationContext.
getBean() return the same reference. In contrast, an object can be a nonsingleton
(also called a prototype) if more than one instance of the class exists in the application.
This means that multiple invocations of ApplicationContext.getBean() return
different instances.

By default, all beans in Spring are defined as singletons. To define a bean as a
prototype, set the singleton attribute to false, as shown here:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
2.5.xsd">
 <bean name="notifier, emailNotifier"
 singleton="false"
 class="com.packtpub.springhibernate.ch10.EmailNotifier">
 </bean>
</beans>

Using a singleton bean is helpful when the creation of more than one instance is
expensive in terms of time, memory, network bandwidth, or CPU usage. Note that
if you use the instance in a multithreaded environment, the instance should be
thread-safe.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[251]

Wiring beans
As we've seen, developing an IoC-based application involves defining the objects'
dependencies in terms of interfaces or abstract classes. The dependencies are then set
up in the configuration file(s) by specifying the actual implementations. Expressing
bean dependencies with concrete implementation in the configuration files is called
bean wiring.

In the previous sections, you learned basic bean configuration using the <bean>
element. In this section, we will discuss configuration details in more depth. As you
have seen, each <bean> element assigns a name to an object, indicates which method
instantiates the object, and determines how to provide object properties.

The <bean> element can contain zero or more <constructor-arg> subelements,
which define the constructor argument values. The bean may use setter injection, and
therefore use nested <property> elements. The bean may use a combination of setter
injection for some properties, and constructor injection for others.

The following example uses constructor injection for the notifier constructor
argument, and setter injection for the retryOnFail property:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 spring-beans-2.5.xsd">
 <bean id="notificationService"
 class="com.packtpub.springhibernate.ch10.
 NotificationServiceImpl">
 <constructor-arg index="0">
 <ref local="notifier"/>
 </constructor-arg>
 <property name="retryOnFail"><value>true</value></property>
 </bean>
 <bean id="notifier" class="com.packtpub.springhibernate.ch10.
 EmailNotifier">
 </bean>
</beans>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[252]

The <property> and <constructor-arg> elements can contain other elements.
These elements, including <bean>, <ref>, <idref>, <value>, <null>, <list>,
<set>, <map>, and <props>, let us provide values for <property> and
<constructor> in different ways. Note that each <property> or
<constructor-arg> element can contain a <bean> element that is the same
as the usual <bean> element. For instance, the recent bean configuration for
NotificationServiceImpl can be expressed as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 spring-beans-2.5.xsd">
 <bean id="notificationService"
 class="com.packtpub.springhibernate.ch10.
 NotificationServiceImpl">
 <constructor-arg index="0">
 <bean id="notifier"
 class="com.packtpub.springhibernate.ch10.EmailNotifier">
 </bean>
 </constructor-arg>
 <property name="retryOnFail"><value>true</value></property>
 </bean>
</beans>

This type of bean configuration is useful when only the outer bean uses the inner
bean. No use of the inner bean outside the scope of the outer bean is applicable.

The following sections discuss these elements.

The <ref> element
The <ref> element applies another bean as the value for a property or constructor
argument. This element has the local, bean, and parent attributes. Here are
some examples:

<ref local="notifier"/>
<ref bean="notifier"/>
<ref parent="notifier"/>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[253]

The local, bean, and parent attributes have these meanings:

local refers to another bean that is defined in the same XML file. Note that
this attribute can only use the ID (never the name) of the bean to which
it refers.
bean is similar to local, the only difference being that the bean to which
it refers can be defined either in another bean definition file or in the same
definition file.
parent refers to a bean defined in the parent factory. This attribute is
useful when beans with the same name exist in both the current and the
parent factory.

The <idref> element
The <idref> element specifies another bean as the value. With this element, an
exception will be thrown if the container cannot find the specified bean. Here is
an example:

<property name="beanName"><idref local="notificationService"/>
</property>

The <idref> element can come with local, bean, or parent, with the same
meanings as for the <ref> element.

The <value> element
The <value> element determines a value for a property or a constructor argument.
The value is always expressed as a string and is transformed by Spring to the
appropriate type. For simple values, such as primitive types or their corresponding
wrapper types, Spring can convert the string literal to the appropriate representation.
However, for other types, or custom value types, you can implement java.beans.
PropertyEditor and register the implementation with Spring. The implementation
of PropertyEditor defines how to convert a string literal to the type of target
property or constructor argument. You can find a number of PropertyEditor
implementations in the org.springframework.beans.propertyeditors package
of the Spring distribution.

Here is an example of the <value> element using a primitive boolean type:

<property name="debug">
 <value>true</value>
</property>

<property name="debug" value="true">

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[254]

Both of these snippets do the same thing and will set the debug property to true. If
debug is defined as Boolean, the container automatically converts the string literal
value "true" to the Boolean or boolean value true.

The <null> element
You can use the <null> element to set a property or constructor argument with
null, as in this example:

<property name="comment"><null/></property>

Note that if you omit the <null/> element, an empty string will be set instead
of null.

The <list>, <set>, <map>, and <props> elements
The <list> element sets a value for a property or constructor argument of type
java.util.List, java.util.Set, or array. The <set> element is similar to <list>,
but does not accept duplicate values. The <map> and <props> elements set values of
type java.util.Map and java.util.Properties, respectively. Here is an example:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 spring-beans-2.5.xsd">
 <bean id="complexBean" class="com.packtpub.springhibernate.ch10.
 ComplexBean">
 <property name="adminIDList">
 <list>
 <value>221</value>
 <value>323</value>
 <value>212</value>
 <value>412</value>
 <value>511</value>
 </list>
 </property>
 <property name="adminNameSet">
 <set>
 <value>John</value>
 <value>David</value>
 <value>Andrew</value>
 <value>David</value>
 <value>Bobby</value>
 </set>
 </property>
 <property name="adminEmailMap">
 <map>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[255]

 <entry key="221">
 <value>John@domain.com</value>
 </entry>
 <entry key="323">
 <value>David@domain.com</value>
 </entry>
 <entry key="212">
 <value>Andrew@domain.com</value>
 </entry>
 <entry key="412">
 <value>David@domain.com</value>
 </entry>
 <entry key="511">
 <value>Bobby@domain.com</value>
 </entry>
 </map>
 </property>
 <property name="adminAgesProps">
 <props>
 <prop key="John">32</prop>
 <prop key="David">41</prop>
 <prop key="Andrew">28</prop>
 <prop key="David">34</prop>
 <prop key="Bobby">45</prop>
 </props>
 </property>
 </bean>
</beans>

Here, the values of <list>, <map>, and <set> are simple string or numeric values.
However, any of these elements can be nested with <bean>, <ref>, <idref>, <list>,
<set>, <map>, <props>, <value>, and <null> elements to hold objects.

Automatic wiring
In the previous section, you learned how to configure objects with their
dependencies inside the bean configuration file. This way of declaring dependencies
is called explicit declaration since you manually specify how to configure each object
using other beans. However, Spring also allows automatic wiring of beans. This
means you can leave dependencies undeclared in the XML file and let Spring find
appropriate values for each property or constructor argument.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[256]

Autowiring is off by default, so you must enable autowiring before you can use
it. To do so, set the autowire attribute of the <bean> element with one the
following values:

no: No autowiring is used for the bean. All dependencies must be declared
explicitly if the default autowiring is not changed at the bean factory level.
byName: The bean is autowired by property name. Spring uses property
names to find matching beans in the factory. For instance, if we use byName
autowiring for the notifier property in the NotificationServiceImpl
class, Spring sets this property with a bean named notifier. If no bean with
that name exists, the property remains unset.
byType: The bean is autowired by property type. Spring finds a matching
bean for each property based on the type of the property. If Spring does not
find a matching bean, the property remains unset. If more than one matching
bean exists, an exception is thrown.
constructor: The bean is autowired by type in its constructor. This means
that Spring finds a matching bean for each constructor argument. If the bean
has more than one constructor, the bean is autowired with the constructor
that has the most matching arguments.
autodetect: The bean is autowired by constructor if it does not have a
default no-argument constructor. Otherwise, it is autowired by bytype.

You can use the dependency-check attribute of the bean definition
to specify whether Spring should treat unmatched properties as an
error case. dependency-check="none" indicates no dependency
checking. dependency-check="simple" determines that dependency
checking is only performed for primitive types and collections.
dependency-check="objects" specifies that dependency checking
is only performed only for properties that are objects, neither primitives
nor collections. Finally, dependency-check ="all" means that
dependency checking is done for all dependencies, including primitive
types, collections, and associated objects.

You can mix autowiring and explicit wiring. Therefore, you can declare a bean as
autowired while some properties or constructor arguments are wired explicitly.
In this case, Spring first wires the properties or constructor arguments, declared
explicitly and then autowires others.

If you don't use it carefully, autowiring may have unexpected results.
With autowiring, you must always check dependencies in your mind,
instead of hard-coding them, and track the dependency relationships. Do
not use autowiring for large deployments.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[257]

The following code shows an example of autowiring. I have changed our notification
service example to use autowiring instead of explicit wiring:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 spring-beans-2.5.xsd">
 <bean id="notificationService"
 autowire="byType"
 class="com.packtpub.springhibernate.ch10.NotificationService">
 <!-- notifier is not wired explicitly -->
 <property name="retryOnFail">
 <value>true</value>
 </property>
 </bean>
 <bean id="notifier"
 class="com.packtpub.springhibernate.ch10.EmailNotifier">
 </bean>
</beans>

This example removes explicit wiring of the notifier property, and instead inserts
autowire="byType" in the bean definition.

Annotation-based container configuration
Spring allows bean configuration with annotations. Spring 2.0 enabled bean
configuration with the @Required annotation. Spring 2.5 provides some additional
annotations, including @Autowired, @Resource, @PostConstruct, @PreDestroy. To
enable annotation-based configuration, you need to add the <context:annotation-
config> element in your bean configuration file, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/
 spring-context-3.0.xsd">

 <context:annotation-config/>

</beans>

Let's look at the annotations used for bean configuration.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[258]

@Required
The @Required annotation is applied to a bean property setter method to indicate
that the related property must be populated at configuration time. Otherwise, it
should be treated as an error. The property can then be valued explicitly through
the bean definition or by autowiring.

Here is an example:

public class NotificationServiceImpl implements NotificationService {
 private Notifier notifier;

 @Required

 public void setNotifier(Notifier notifier) {

 this.notifier = notifier;

 }

}

As you can see, the @Required annotation is applied to the setNotifier() method.
Therefore, the notifier property is a mandatory property that must be initialized
for the NotificationService object.

@Autowired
The @Autowired annotation can be put on any setter method, class property method,
or even constructor with any arguments. This annotation can be used with the
required property to indicate whether that property is required for autowiring
purposes or not. This is an example:

public class NotificationServiceImpl implements NotificationService{

 private Notifier notifier;

 @Autowired(required=false)

 public void setNotifier(Notifier notifier) {
 this.notifier = notifier;
 }

}

Although there is no limitation on the number of annotated constructors in each
class, only one annotated constructor can be marked as required.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[259]

@Resource
It is also possible to use JSR-250 @Resource annotation to mark a field or a setter
method. The @Resource annotation uses an optional name attribute which is the
name of the object to inject. If this attribute is not specified, Spring uses the name
of the bean property as the value for this attribute. Here is an example:

public class NotificationServiceImpl implements NotificationService {

 private Notifier notifier;

 @Resource(name="myNotifier")
 public void setNotifier(Notifier notifier) {
 this.notifier = notifier;
 }

}

By this code, Spring injects the Notifier object whose name in the Spring context is
myNotifier to the NotificationService object. If the name attribute is not specified,
Spring injects the bean named notifier to the NotificationService object.

Classpath scanning for annotated classes
Spring provides stereotype annotations to mark classes as a specific managed bean in
its context. These annotations are as follows:

@Component: It is the basic annotation type to mark a class as a Spring bean.
@Controller: It is used to mark a class as a controller in the Spring MVC.
@Repository: It marks a class as a repository, such as a Data Access Object.
@Service: This annotation indicates that the annotated class is a part of the
business logic of the application.

All of these annotations make the annotated class a managed bean in the Spring
context. The following shows the NotificationService class which is now
annotated with @Component:

@Component
public class NotificationServiceImpl implements NotificationService {

 private Notifier notifier;

 @Autowired
 public void setNotifier(Notifier notifier) {
 this.notifier = notifier;
 }

}

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[260]

When a class is annotated with a stereotype annotation, Spring uses the
uncapitalized non-qualified class name as the bean name for that object. Therefore,
for the annotated class above, Spring uses the name notificationService. It is
also possible to override this default behavior with a name through the stereotype
annotation like as this:

@Component("myNotificationService")
public class NotificationServiceImpl implements NotificationService{

…

}

Therefore, Spring uses myNotificationService as the name for the
NotificationService bean.

To Enable Spring to auto-detect the annotated classes, you need to use the
<context:component-scan> element inside the configuration file to introduce
the base package in which Spring should look for annotated classes. The following
shows how it should be done:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:context="http://www.springframework.org/schema/context"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-
2.5.xsd">

 <context:component-scan base-package="com.packtpub"/>

</beans>

You can use a comma separated list of packages as the value of the
base-package attribute, if the annotated classes are located in
different packages.

Other format forms for bean definition
You can use the properties file format as an alternative to the XML format for bean
configuration. However, the properties file format doesn't support a number of
container capabilities that are expressed easily through the XML format, such as
constructor injection, method injection, nested beans, and so on.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[261]

You can also configure the IoC container programmatically. In this book, we are not
interested in the programmatic approach, because it removes the flexibility from the
code, and increases maintenance costs.

BeanFactory and ApplicationContext
Spring provides a variety of bean factory implementations to support a range
of different situations, each having different IoC requirements. All bean
factories are implementations of org.springframework.beans.factory.
BeanFactory, or any of its subinterfaces. Some of the most significant of
these are BeanFactory, HierarchicalBeanFactory, ListableBeanFactory,
AutowireCapableBeanFactory, and ConfigurableBeanFactory.

Additionally, Spring provides ApplicationContext as a specific type of bean
factory with some advanced functionality. The ApplicationContext interface
extends the BeanFactory interface, so it does everything a bean factory can do.
However, application context has additional functionalities such as these:

Application context lets us work with the IoC container in a completely
declarative fashion. (We refer to both the ApplicationContext object, and
the bean definition file, as the application context.) Furthermore, Spring
provides some utility classes which let us add IoC capability to the web layer,
and allows automatic loading of application contexts in web frameworks. Of
course, the aim of this is to add IoC functionality to the framework, instead
of the user's code.
Application context extends the MessageResource interface, so it provides
messaging functionality.
Application context supports an event-handling model. It can notify
beans that implement the ApplicationListener interface when an
ApplicationEvent gets published to the ApplicationContext.
Application context is a resource loader because it extends the
ResourcePatternResolver interface. This means that ApplicationContext
can load any resources from almost any location in a transparent fashion,
including from the classpath, a file system location, or anywhere that can be
described with a standard URL, and other variations.

In practical applications, ApplicationContext is always
used instead of BeanFactory.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[262]

Let's look at the different bean factories available to us:

BeanFactory: This is the basic interface that defines the general behaviors
of all bean factories. This interface defines various getBean() methods for
obtaining beans from the container. It also includes some extra methods,
such as containsBean(), isSingleton(), and getType(), which allow us
to query the bean definition in application code.
HierarchicalBeanFactory: This bean factory provides a factory for
hierarchical bean definitions. When a factory is queried for a bean, and
does not have the requested bean, its parent factory is asked for that bean.
The parent may also ask its own parent when it does not have the bean,
and so on. This factory is useful when the application has a number of bean
definitions. If each bean definition has its own beans, and uses some general
beans of others, you must create a hierarchical bean factory, in which the
general beans are defined in the parent factory or factories. Note that the
entire process of bean exploring is transparent for all clients, so you can treat
this factory the same as other bean factories. The HierarchicalBeanFactory
interface defines only two methods: getParentBeanFactory() returns the
current factory's parent factory, and containsLocalBean() determines
whether or not the current factory contains a particular bean.
ListableBeanFactory: This bean factory allows us to query the beans. This
factory provides getBeanDefinitionNames() to get the names of all beans,
getBeanNamesForType(Class class) to get the names of all beans of a
certain type, getBeanDefinitionCount() to get the number of all beans,
containsBeanDefinition(String beanName) to check whether any beans
with a particular name exist, and getBeansOfType(Class aClass) to obtain
all beans of a certain type in a java.util.Map object.
AutowireCapableBeanFactory: This bean factory is capable of autowiring
for existing bean instances. When you are extending an existing application
that does not rely on Spring for object instantiations, or when you are using
third-party code that uses its own mechanism for instantiating objects,
you can use this factory if you want Spring to provide dependencies and
wire the objects together. The main method of this factory is autowire(),
which lets you specify a class name to the factory and get a fully configured
object. Two other significant methods are autowireBeanProperties()
and applyBeanPropertyValues(), which let you configure a preexisting
external object and supply its dependencies using Spring 3.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[263]

Although Spring allows us to configure the IoC container either
programmatically, through its rich API, or declaratively, through different
configuration formats, this book discusses only declarative bean factories
and application contexts with XML as the configuration format.

Now that we've seen the various bean factories, let's look at the different application
contexts available in Spring:

ApplicationContext: This interface is the basic application context.
It extends BeanFactory and defines the basic functionality for all
application contexts.
WebApplicationContext: This subinterface of ApplicationContext defines
an extra getServletContext() method, and provides IoC ability in web
applications. I will discuss this application context in Chapter 14.
FileSystemXmlApplicationContext: This implementation of the
ConfigurableApplicationContext interface allows us to work with XML
configuration files represented as plain string paths to the file system or
URLs. This can be used in stand-alone applications or for testing purposes.
ClassPathXmlApplicationContext: This general-purpose application
context may be used in any environment and condition. It allows us to
configure the container through an XML file in the classpath. The path
is expressed as a plain string relative to the root of the classpath and is
separated by a forward slash (/) instead of a dot (.).

Applying IoC to Hibernate resources
Hibernate applications may use either container-managed or application-managed
connections behind the scenes. We can use IoC in a Hibernate application and
configure a data source as a bean. IoC lets us manage the data source transparently
and declaratively. Therefore, we can look up the container to obtain the
SessionFactory object initialized with a configured data-source object.

We can assume that SessionFactory is a singleton bean in the Spring IoC container.
However, configuring a SessionFactory as a bean is not effortless as it has many
properties and a complex structure. For this and similar cases, Spring provides a
specific type of bean called a factory bean.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[264]

A factory bean is a bean inside the IoC container that produces other objects. Note
that a factory bean is different from a bean factory. Bean factories are the Spring
containers that instantiate and manage beans, whereas factory beans are normal
beans managed by a bean factory. However, when a factory bean is referred to
by another bean in the container, or by application code by using the getBean()
method, the container does not return an instance of the factory bean. Instead, it
returns an object that the factory bean produces.

You can easily define a factory bean by implementing the org.springframework.
beans.factory.FactoryBean interface:

public interface FactoryBean {
 Object getObject() throws Exception;
 Class getObjectType();
 boolean isSingleton();
}

The getObject()method returns the output object of the factory. The container
automatically calls it when the factory bean is accessed. The isSingleton()
flag determines whether the returned object is a singleton or not. Finally, the
getObjectType() method determines the type of the output object (null if this
is not known).

Let's look at an example to see how a FactoryBean is implemented and used.
Suppose that we need to obtain a distinct java.sql.Connection object whenever
the container is looked up by the connection name, as follows:

ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "com/packtpub/springhibernate/ch10/beans.xml");
Connection connection = (Connection)ctx.getBean("connection");

Because java.sql.Connection cannot easily be configured in the bean
definition, we may decide to implement a BeanFactory class and use it as
a factory for Connection objects in the Spring context. The following code
shows this implementation:

package com.packtpub.springhibernate.ch10;

import org.springframework.beans.factory.FactoryBean;

import java.sql.Connection;
import java.sql.DriverManager;
import java.util.Properties;

public class ConnectionFactoryBean implements FactoryBean {
 String url;
 String driver;
 String username;

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[265]

 String password;
 Properties props;

 public Object getObject() throws Exception {
 if(props == null) {
 props = new Properties();
 }
 if(username != null) {
 props.setProperty("username", username);
 }
 if(password != null) {
 props.setProperty("password", password);
 }
 validateUrl();
 validateDriver();

 Class.forName(driver);
 return DriverManager.getConnection(url, props);
 }

 public Class getObjectType() {
 return Connection.class;
 }

 public boolean isSingleton() {
 return false;
 }

 private void validateUrl() throws Exception {
 if ((url == null) || (url.equals(""))) {
 url= props.getProperty("url");
 }
 if(url == null) {
 throw new Exception("Database URL is not configured or is
invalid");
 }
 }

 private void validateDriver() throws Exception {
 if ((driver == null) || (driver.equals(""))) {
 driver= props.getProperty("driver");
 }
 if(driver == null) {
 throw new Exception("Database Driver is not configured or is
invalid");
 }
 }

 public void setUrl(String url) {

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[266]

 this.url = url;
 }

 public void setDriver(String driver) {
 this.driver = driver;
 }

 public void setUsername(String username) {
 this.username = username;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public void setProps(Properties props) {
 this.props = props;
 }
}

This class has five properties that are set through setter injections. These
properties determine the database URL, the driver's class name, username,
password, and optional JDBC properties for the database connection. To use
ConnectionFactoryBean, you need to configure it in the Spring context as follows:

<bean id="connection"
 class="com.packtpub.springhibernate.ch10.ConnectionFactoryBean">
 <property name="username" value="sa"/>
 <property name="password" value=""/>
 <property name="driver" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:hsql://localhost/hiberdb"/>
 <property name="props">
 <value>
 defaultRowPrefetch=15
 </value>
 </property>
</bean>

Note that this example would not be used in a real application, because in practice,
there are better approaches to obtain the Connection object, such as looking up an
application server.

Although you can implement a factory bean whenever you need to, Spring includes
some useful factory beans for common resources and services. The following table
shows some of these factories:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[267]

Factory Bean Description
JndiObjectFactoryBean Returns the result object of a JNDI lookup.
ProxyFactoryBean Returns a proxy object. A proxy is an object that

wraps an existing object and provides added
functionality for the wrapped object. Chapter 11
discusses proxies in detail.

TransactionProxyFactoryBean Returns a transactional proxy for persisting objects,
such as Data Access Object (DAO) classes. I have
discussed TransactionProxyFactoryBean in
Chapter 11 and Chapter 12.

LocalSessionFactoryBean Returns a configured Hibernate
SessionFactory object that may be used in
DAO classes.

PropertyEditors
PropertyEditor defines how to convert a string literal that is defined as a value for
a property, or constructor argument in the bean definition files, to the target type.
Spring can convert simple primitive values (such as int, long, and boolean) and
their corresponding wrapper types (such as Integer, Long, and Boolean) from the
string form to the target primitive type. Additionally, Spring uses a number of built-
in PropertyEditor, allowing some extra types to be converted. The following table
shows these built-in PropertyEditor and the target type to which each converts the
string literal. All of these PropertyEditor are located in the org.springframework.
beans.propertyeditor package:

Built-in PropertyEditor Description
ClassEditor Converts a string literal that represents a class to

an object of java.lang.Class. If the class is not
found, an IllegalArgumentException is thrown.

FileEditor Converts a string literal that represents a file to an
object of java.io.File.

LocaleEditor Generates a java.util.Locale from a string
literal expressed as [language]_[country]_
[variant].

PropertiesEditor Converts strings expressed as the key and value
pairs (key=value) to an object of java.util.
Properties.

StringArrayPropertyEditor Converts a comma-delimited list of strings to an
array of String.

URLEditor Resolves a string representation of a URL to an object
of java.net.URL.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[268]

Let's look at a simple example to see how Spring uses these PropertyEditor.
Suppose the application uses a ConfigurationBean class, shown in the
following code:

package com.packtpub.springhibernate.ch10;

import java.io.File;
import java.net.URL;
import java.util.Locale;
import java.util.Properties;

public class ConfigurationBean{
 private int intValue;
 private boolean booleanValue;
 private String[] stringArray;
 private Class clazz;
 private File file;
 private Properties props;
 private Locale locale;
 private URL url;

 public int getIntValue() {
 return intValue;
 }

 public void setIntValue(int intValue) {
 this.intValue = intValue;
 }

 public boolean isBooleanValue() {
 return booleanValue;
 }

 public void setBooleanValue(boolean booleanValue) {
 this.booleanValue = booleanValue;
 }

 public String[] getStringArray() {
 return stringArray;
 }

 public void setStringArray(String[] stringArray) {
 this.stringArray = stringArray;
 }

 public Class getClazz() {
 return clazz;
 }

 public void setClazz(Class clazz) {
 this.clazz = clazz;
 }

 public File getFile() {
 return file;
 }

 public void setFile(File file) {
 this.file = file;

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 10

[269]

 }

 public Properties getProps() {
 return props;
 }

 public void setProps(Properties props) {
 this.props = props;
 }

 public Locale getLocale() {
 return locale;
 }

 public void setLocale(Locale locale) {
 this.locale = locale;
 }

 public URL getUrl() {
 return url;
 }

 public void setUrl(URL url) {
 this.url = url;
 }
}

The following code shows how an object of this class can be configured as a bean in
the Spring bean definition file:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
2.5.xsd">
 <bean id="configurationBean" class="com.packtpub.springhibernate.
ch10.ConfigurationBean">
 <property name="intValue" value="10"/>
 <property name="booleanValue" value="true"/>
 <property name="stringArray" value="Spring,Hibernate,Ant,Log4j,HS
QLDB"/>
 <property name="clazz" value="java.util.Stack"/>
 <property name="file" value="/images/sample.gif"/>
 <property name="url" value="http://www.packtpub.com"/>
 <property name="locale" value="en_US"/>
 <property name="props">
 <value>
 username=administrator
 password=123
 </value>
 </property>
 </bean>
</beans>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Inversion of Control with Spring

[270]

When the client obtains the bean, the container automatically converts literal strings
to the proper types.

Summary
In this chapter, you learned about Inversion of Control (IoC) and dependency
injection. Inversion of Control, a concept based on Java language constructs, allows
us to define object dependencies in terms of interfaces or abstract classes, and lets an
outside object, the IoC container, instantiate them from concrete classes.

We saw how the Spring IoC container can be used to develop IoC-style code. First,
you must define all object dependencies of interfaces or abstract classes. Then, you
must configure bean definitions to tell the container which dependency of which
concrete class should be instantiated. Finally, you must start up the IoC container
and obtain configured objects by their names.

In Spring, bean definitions can be in XML or properties files. In this chapter, we
discussed the XML variant only, because it's the most widely used format for bean
definitions. Each XML bean definition starts with an XML declaration, followed by
a <beans> element as its root. The <beans> element introduces the schema version
that Spring uses for validation of the bean definition file. All beans are declared
through <bean> elements inside <beans>. Any <bean> can come with two attributes:
id and class. The id assigns an identifier to the bean, by which it is referred to
along the bean definition or in the application code. The class specifies the class of
which the object is instantiated. The <bean> element can nest with <property> and
<constructor-arg> elements, which determine IoC injection values for the object
properties or constructor arguments, respectively.

We also learned how to create the SessionFactory object in IoC-style code. To do
this, we used LocalSessionFactoryBean as the factory bean, which is configured
in the same way as any normal bean in the Spring IoC container. Accessing it always
returns an object of SessionFactory.

Finally, we looked at PropertyEditors, which define how Spring converts a
property value expressed as a string literal to a Java object.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP
Today, Object-Oriented Programming (OOP) is a common development
methodology for almost all software applications. With OOP, the application
comprises a collection of classes and interfaces. OOP indicates that classes have clear,
simple, and distinct definitions and responsibilities. Minimizing the interdependency
of classes makes it easier to create, test, and maintain the application. To achieve
this, you should break the application into smaller and smaller meaningful, simple,
and well encapsulated classes. However, the nature of OOP means that this is not
always possible. Sometimes, it is difficult, or even impossible, to express logic in an
encapsulated class. In such situations, developers must mix the logic with functions
and responsibilities of other classes.

Aspect-Oriented Programming (AOP) is a new methodology which offers software
developers clean separation of concerns. When you use AOP, the application is
organized by clean, simple, well encapsulated classes without interference from
other classes' functions.

AOP does not compete with OOP. Instead, it complements OOP
where OOP cannot perform its role perfectly.

This chapter has four sections:

Introduction to AOP: This section provides an overview of what AOP is,
what it offers us, and how it is organized. This section discusses how AOP
solves the problems associated with OOP.
Using Spring AOP with Spring IoC: An example: This section uses a simple
example to demonstrate how, in practice, AOP concepts are implemented
with Spring AOP.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[272]

Spring's AOP Framework: This section delves into the implementation
details of Spring AOP. This section explains different aspects of Spring AOP
that you can use to implement simple, flexible, and powerful AOP.
Moving to Spring 2.x's AOP: This section offers insight into new AOP
features introduced by Spring 2.x. This section explains how AOP
components are easily declared in the Spring context through new XML
elements defined by the AOP schema.

Introduction to AOP
Before discussing AOP, I want to introduce a new term: concern. A concern is
a function or behavior that the application performs. For example, persistence,
validation, security checking, and so on are typical concerns. Application
development is the process of implementing all application concerns.

With OOP, developing a concern means creating a class which fully encapsulates the
concern's functionality. Each concern that is implemented as a class is instantiated
and is used by other concerns, which in turn are implemented by other classes. Using
this approach, the concerns are individual classes, which are easy to debug, refactor,
document, and support. Unfortunately, this approach is not always appropriate. In
practice, concerns may be scattered over many other concerns. For example, consider
the logging concern that is always implemented as glue code in other concerns. To
implement the logging concern, you need to mix logging code with other application
code. Relying on OOP, the logging concern cannot be encapsulated in an individual
class. Logging and similar concerns are called cross-cutting concerns since they are
logic scattered over other concerns' logic.

Here are some other examples of cross-cutting concerns:

All of the methods with certain names are logged by the application's
logging mechanism.
All of the persistent methods are invoked inside a transaction.
Exceptions thrown by certain methods are handled similarly.
The application provides customers' statistical information, reporting
information about different parts of the application.
Only authorized clients can invoke certain methods.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[273]

To implement these concerns with OOP, you must change the code to insert the
concern code. If any of these concerns needs to be updated or removed, you must
change the other concern's code to update or remove the concern. More importantly,
a concern is logic that may be applied to many objects, which means you must
change many methods just to insert or update the same logic. Obviously, this is not
an effective approach because it does not follow the encapsulation model provided
by OOP, or provide reusable functionality. As a result, the code is difficult to test
and maintain.

Although the application concerns can be implemented by the developer
to be managed by the AOP container, they are almost always ready
implemented concerns that are only configured to be managed by the
container. Security and transaction are common cases for concerns.

As you can see, OOP cannot provide a neat, clean solution in such cases. This is
where AOP comes in. AOP provides a mechanism to fully separate concerns, and
to describe cross-cutting concerns with individual classes in a way that's similar to
other ordinary concerns.

To see how AOP helps us to implement cross-cutting concerns, let's refer back to an
example from Chapter 3 and see how OOP and AOP handle these concerns.

Implementing cross-cutting concerns
with OOP
Chapter 3 introduced a simple case to demonstrate Spring IoC. According to
that case, a nonfunctional requirement indicates that the application records any
change of an object's properties for auditing purposes. In that example, three
different recorders were introduced: SetterInfoConsolePrinter for recording
object modifications in the console, SetterInfoDBPrinter for recording object
modifications in the database, and SetterInfoLogPrinter for recording object
modifications in log files. Each of these classes implements a common interface,
called SetterInfoPrinter, which outlines the recorder behavior.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[274]

You change object properties through their setter methods. This means we need to
track the invocation of objects' setter methods to record object modifications. For this
purpose, we changed the Student class, as shown in code below, to record object
modifications in the console, database, or log files:

package com.packtpub.springhibernate.ch11;

public class Student {

 private int id;
 private String firstName;
 private String lastName;
 private SetterInfoPrinter printer; //ideally initialized through
Spring IoC

 //zero-argument
 public Student() {
 }

 public Student(String firstName, String lastName) {
 this();
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public void setId(int id) {
 printer.print("setId", this.id, id);
 this.id = id;
 }

 public void setFirstName(String firstName) {
 printer.print("setFirstName", this.firstName, firstName);
 this.firstName = firstName;
 }

 public void setLastName(String lastName) {
 printer.print("setLastName", this.lastName, lastName);
 this.lastName = lastName;
 }
 //getter methods
 //hashCode() and equals() methods

 public void setPrinter(SetterInfoPrinter printer) {
 this.printer= printer;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[275]

The recording requirement is a cross-cutting concern because it is scattered over
many setter methods. To change the recording strategy, or to remove the recording
functionality from the code, we need to change all of the classes to update or remove
the recording functionality. The following figure depicts the OOP approach for
implementing the recording concern in the Student class:

Client
change value Student

RecordingConcern
mixed with

The OOP approach of implementing a cross-cutting concern has the
following shortcomings:

Code duplication: We need to add duplicate code to every method. In our
example, the recording code is put in all of the setter methods.
Testing problems: Testing the final code would be very difficult because
the cross-cutting concern is not located in one place, where it could be easily
tested. In our example, we need to test all setter methods one-by-one.
Maintenance difficulty: If the requirements change, we must change the
code in many places. For example, if a business requirement indicates that
no exception handling is needed, or that exceptions should be logged instead
of notifying the administrator, we must change many areas of the code to
satisfy the new requirement.

Now that you understand what OOP lacks when implementing cross-cutting
concerns, we are in a position to dig into the details of AOP and see how it
complements OOP. Before we do that, though, let's go over some AOP terminology.

AOP terminology
As with other methodologies, AOP has a terminology to describe different
participants in an AOP operation. The following list briefly defines AOP terms:

Advice: Advices implement concerns. An advice is a behavior or reaction
that is performed at particular points of the application (for example, the
recording functionality mentioned in the previous section). Spring supports
five different types of advice:

Advice executed around method execution, both before and
after method invocation.
Advice performed before method invocation.

•

•

•

•

°

°

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[276]

Advice performed after method invocation when the method
normally returns.
Advice executed after method invocation when the method
throws an exception and returns abnormally.
Advice executed after method invocation. Either the method
returns normally or it throws an exception and returns
abnormally. (This is only supported by Spring 2.x.)

Joinpoints: These are the points in the application where the advice is
invoked. Joinpoints are where we insert the cross-cutting logic provided by
an advice (setter methods in the previous example). Typical joinpoints are
a call to a method, the method invocation itself, class initialization, and
object instantiation.
Pointcuts: Any pointcut can be considered a collection of joinpoints.
Pointcuts allow us to group joinpoints, and then apply an advice to them.
For instance, you can define all methods of a particular class as a pointcut.
Advisors and interceptors: These objects are responsible for executing advice
in the pointcuts.
Target or advised object: This is the object that includes the main concern,
and to which the cross-cutting concern is added (Student objects in
the example).
Proxy: This is an intermediate object that resides between the calling
object and the target object. It's responsible for applying a chain of
advisors or interceptors.

The following figure shows AOP participants and how they relate to the
AOP framework:

Client
call

Spring-AOP

AOP Proxy Advisor/
Interceptor

Advisor/
Interceptor

Advisor/
Interceptor

Target

Now that you've seen all of the AOP participants, you may ask what
the aspect in Aspect-Oriented Programming refers to. As with many
other AOP terms, this term originates from the old frameworks, such
as AspectJ, which provide AOP functionality. As you will see later in
this chapter, this term has come to Spring from release 2.0, when Spring
provides AspectJ-style AOP implementation.

°

°

°

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[277]

Let's apply AOP to our recording example. AOP allows us to remove recording code
from the setter methods, and instead define the recording concern as a distinct class
to record generally a property modification. We can tell the AOP framework to apply
the recording concern before a setter method is called. The following figure shows
the AOP approach to implementing the recording concern:

Client

Spring-AOP

Student

apply

RecordingConcern

change value

The process of AOP development can be summarized as follows:

1.	 Implement the advice: Remove the cross-cutting concern from the main
concern and implement it as an individual class.

2. Determine pointcuts: Use Spring's built-in pointcuts or implement custom
pointcuts to select target methods. Note that we do not involve the joinpoint
objects. Each pointcut object notionally refers to a set of joinpoints with
common characteristics. For example, a setter pointcut determines all setter
methods, each of which is a joinpoint.

3. Create an advisor: Use Spring's built-in advisors to combine the pointcuts
and the advice created in the previous steps.

4. Create a proxy: Use Spring's built-in classes to create a proxy object. Each
proxy holds the target object with a set of advisors. The proxy applies the
advisors, one-by-one, to the target object. The advisor is responsible for
selecting the target methods of the target object (based on the pointcut) and
applying the advice. However, each advice can be added directly to the
proxy instead of the advisor.

Spring lets you use its IoC container and then configure all of the AOP
objects declaratively in the Spring context. This means only the advice
implementation is mandatory when you use AOP with Spring IoC.

Next, let's see how these concepts work in practice.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[278]

Implementing cross-cutting concerns
with AOP
To use AOP, we can simply remove the recording concern from the Student class, as
shown in the code below:

package com.packtpub.springhibernate.ch11;

public class Student {

 private int id;
 private String firstName;
 private String lastName;

 //zero-argument
 public Student() {
 }

 public Student(String firstName, String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public void setId(int id) {
 this.id = id;
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 //getter methods
 //hashCode() and equals() methods

}

Then, we must define the recording concern as an advice class, as shown in the
following code:.

package com.packtpub.springhibernate.ch11;

import org.springframework.aop.MethodBeforeAdvice;

import java.lang.reflect.Method;

public class RecordingConcern implements MethodBeforeAdvice {

 private SetterInfoPrinter printer; //ideally initialized with
Spring IoC

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[279]

 public void before(Method method, Object[] args, Object target)
 throws Throwable {
 if((method.getName().startsWith("set"))
 &&(target.getClass()==Student.class)) {
 String methodName = method.getName();
 Object newValue = args[0];
 Method getter= getterForSetter (Student.class,
 methodName);
 Object oldValue = getter.invoke(target, args);
 printer.print(methodName, oldValue, newValue);
 }
 }

 public Method getterForSetter(Class clazz, String methodName) {
 try {
 return clazz.getMethod(methodName.replaceFirst("set", "get"));
 } catch (NoSuchMethodException e) {
 ;
 }
 return null;
 }

 public void setPrinter(SetterInfoPrinter printer){
 this.printer = printer;
 }
}

As you can see, the RecordingConcern class implements the
org.springframework.aop.MethodBeforeAdvice interface. This is a Spring
interface that implements a before advice, called before method invocation. In our
example, we need to call the recording concern to record the method name, the old
value, and the new value, so our advice class implements MethodBeforeAdvice. As
you will see, Spring also provides other types of advice, to be called after method
invocation, or after an exception is thrown through the method invocation.

You can now apply RecordingConcern to an instance of the Student class through
Spring AOP. The following code shows a simple class with a static getStudent()
method. This method, a factory for Student instances that instantiates the Student
instance, uses the Spring AOP API to apply the RecordingConcern advice to that
instance, and returns the prepared Student instance:

package com.packtpub.springhibernate.ch11;

import org.springframework.aop.framework.ProxyFactory;

public class StudentFactory {

 public static Student getStudent() {

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[280]

 Student std = new Student();

 //create and configure the advice object
 RecordingConcern advice = new RecordingConcern();
 SetterInfoPrinter printer = new SetterInfoConsolePrinter();
 advice.setPrinter(printer);

 //create proxy
 ProxyFactory pf = new ProxyFactory();

 //introduce target & advice to proxy
 pf.addAdvice(advice);
 pf.setTarget(std);

 //use proxy object instead of actual target object
 Student proxy = (Student) pf.getProxy();

 return proxy;
 }
}

If you use this factory class now to obtain Student instances, instead of directly
instantiating the Student class, the advice is applied to the Student instances.
Therefore, just replace:

Student student = new Student();

with:

Student student = StudentFactory.getStudent();

Although this works, this approach to AOP implementation is not effortless. In
practice, Spring IoC and Spring AOP work together to reduce effort and create more
effective code.

The next section discusses another, more practical example that relates to our sample
educational system application. The example shows how Spring AOP and Spring
IoC are integrated to simplify application development, and to produce neat, clean,
effective code.

Using Spring AOP with Spring IoC:
An example
In Chapter 10, we wrote a notification service that notifies the system administrator
whenever a fatal error occurs in the system. Obviously, the notification service is a
cross-cutting concern because the notification logic is scattered throughout many
methods in many classes. Implementing the notification logic with OOP involves
changing the other concerns.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[281]

Assume that we have a StudentService class in our application, which performs all
student-relevant operations, including student registration, profile updating, and so
on. A requirement of the application indicates that StudentService must notify the
system administrator after an exception is thrown in the StudentService object.

Let's see how the code looks with OOP, and then explore how this concern can be
implemented with AOP to overcome OOP's deficiencies.

Implementing the notification concern
with OOP
Following Spring's best-practice implementations, we need an extra interface,
StudentServiceInf, which exposes all of the StudentService methods, lets us
configure StudentService in the IoC container, and implement IoC-style code. This
StudentService class uses instances of StudentDao and NotificationServiceInf,
which are provided by the IoC container through setter injection, to perform
student-related operations and to notify the administrator when an exception is
thrown, respectively.

The following code shows StudentServiceInf:

package com.packtpub.springhibernate.ch11;

import java.util.List;

public interface StudentServiceInf {
 public List getAllStudents() throws ServiceException;
 public Student getStudent(Long stdId) throws ServiceException;
 public Student saveStudent(Student std) throws ServiceException;
 public Student removeStudent(Student std) throws ServiceException;
 public Student updateStudent(Student std) throws ServiceException;
}

And here is the StudentService method as the implementation of
StudentServiceInf. Note that I have intentionally omitted other business
methods of the StudentService class to keep the example simple:

package com.packtpub.springhibernate.ch11;

import java.util.List;

import org.springframework.dao.DataAccessException;

public class StudentService implements StudentServiceInf {
 StudentDao studentDao;
 NotificationServiceInf notificationService;

 public List getAllStudents() throws ServiceException {
 try {
 return studentDao.getAllStudents();
 } catch (HibernateException e) {

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[282]

 notificationService.notify(e.getMessage());
 throw new ServiceException(e);
 }
 }

 public Student getStudent(Long stdId) throws ServiceException {
 try {
 return studentDao.getStudent(stdId);
 } catch (HibernateException e) {
 notificationService.notify(e.getMessage());
 throw new ServiceException(e);
 }
 }

 public Student saveStudent(Student std) throws ServiceException {
 try {
 return studentDao.saveStudent(std);
 } catch (HibernateException e) {
 notificationService.notify(e.getMessage());
 throw new ServiceException(e);
 }
 }

 public Student removeStudent(Student std) throws ServiceException
{
 try {
 return studentDao.removeStudent(std);
 } catch (HibernateException e) {
 notificationService.notify(e.getMessage());
 throw new ServiceException(e);
 }
 }

 public Student updateStudent(Student std) throws ServiceException
{
 try {
 return studentDao.updateStudent(std);
 } catch (HibernateException e) {
 notificationService.notify(e.getMessage());
 throw new ServiceException(e);
 }
 }

 //other student-related business methods

 //setter methods for dependency injection
 public void setStudentDao(StudentDao studentDao) {
 this.studentDao = studentDao;
 }

 public void setNotificationService(NotificationServiceInf
notificationService){
 this.notificationService = notificationService;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[283]

As you can see in the listings above, interacting with any method of StudentDao
may throw a HibernateException, which is caught in the StudentService class,
and then notifies the administrator. The notification process happens by invoking
the notify() method of the NotificationServiceInf instance with a message
as an argument. After that, a new ServiceException is thrown, to be propagated
to the layer above, which uses the service layer. The following code shows the
ServiceException class:

package com.packtpub.springhibernate.ch11;

public class ServiceException extends RuntimeException {
 public ServiceException() {
 }

 public ServiceException(String message) {
 super(message);
 }

 public ServiceException(Throwable cause) {
 super(cause);
 }

 public ServiceException(String message, Throwable cause) {
 super(message, cause);
 }
}

ServiceException is a runtime exception, so it may be handled by the calling layer
or ignored.

We can simply throw a RuntimeException so there will no need
to implement the ServiceException class. However, it would be
a good idea to differentiate typical RuntimeExceptions that may
occur everywhere, and the exceptions which are originated with
HibernateExceptions.

The code we have written so far mixes two distinct concerns: student-relevant
operations and administrator notification. All methods have code to handle
HibernateException in the same way, by notifying the administrator and
throwing a new ServiceException.

Administrator notification is a cross-cutting concern because this is a distinct
logic outside of the main responsibility of StudentService and scattered over
all methods.

Let's refactor our implementation with Spring AOP.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[284]

Implementing notification concern with AOP
With AOP, StudentService is modularized into its main responsibility
(student-related operations) and the notification concern. Two modules then
can be mixed together by the Spring AOP framework when a StudentService
method is called.

The following code shows the StudentService class, with the notification concern
code omitted:

package com.packtpub.springhibernate.ch11;

import java.util.List;

import org.hibernate.HibernateException;

public class StudentService implements StudentServiceInf {
 StudentDao studentDao;

 public List getAllStudents() throws HibernateException {
 return studentDao.getAllStudents();
 }

 public Student getStudent(Long stdId) throws HibernateException{
 return studentDao.getStudent(stdId);
 }

 public Student saveStudent(Student std) throws HibernateException{
 return studentDao.saveStudent(std);
 }

 public Student removeStudent(Student std) throws
HibernateException{
 return studentDao.removeStudent(std);
 }

 public Student updateStudent(Student std) throws
HibernateException {
 return studentDao.updateStudent(std);
 }

 //other student-related business methods

 public void setStudentDao(StudentDao studentDao) {
 this.studentDao = studentDao;
 }

 public void setNotificationService(NotificationServiceInf
notificationService){
 this.notificationService = notificationService;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[285]

In the following code, the notification concern is implemented as another class,
NotificationThrowsAdvice, to be called by the Spring AOP framework after a
HibernateException is thrown:

package com.packtpub.springhibernate.ch11;

import org.hibernate.HibernateException;

import org.springframework.aop.ThrowsAdvice;

public class NotificationThrowsAdvice implements ThrowsAdvice {
 NotificationServiceInf notificationService ;//initialized via IoC

 public void afterThrowing(HibernateException ex) throws Throwable
{
 notificationService.notify(ex.getMessage());
 throw new ServiceException(ex);
 }

 public void setNotificationService(NotificationServiceInf
notificationService){
 this.notificationService = notificationService;
 }
}

As you can see, this class implements the org.springframework.aop.
ThrowsAdvice interface. This interface is just a marker interface, not enforcing to
implement any method in the implemented class. This interface is a Spring interface
to implement advice called after a particular exception is thrown in the target objects.
The NotificationThrowsAdvice class has an afterThrowing() method, which
takes a HibernateException object as an argument. Spring calls this method after
a HibernateException is thrown in the target methods. As we will discuss, this
class can have other afterThrowing() methods to handle exceptions of different
types. For example, the NotificationThrowsAdvice class may have an additional
afterThrowing() method with the following signature to handle exceptions of type
java.io.IOException when they are thrown in the target object:

public void afterThrowing(java.io.IOException ex) throws Throwable {
 notificationService.notify(ex.getMessage());
 throw new ServiceException(ex);
}

Now that the advice has been implemented, it can be applied either programmatically
or declaratively to the target objects. In the previous code, you saw how an advice can
be applied programmatically. However, it would be more flexible to use the Spring
IoC container with Spring AOP to configure and apply the advice to the target object.
This mechanism lets you apply the advice with minimal Java code, as well you can
modify or remove the advice or insert another advice without having to change the
Java code.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[286]

Here are the bean definitions for the NotificationService and
NotificationThrowsAdvice objects in the Spring context:

<bean id="notificationThrowsAdvice"
 class="com.packtpub.springhibernate.ch11.
NotificationThrowsAdvice">
 <property name="notificationService">
 <ref local="notificationService"/>
 </property>
</bean>
<bean id="notificationService"
 class="com.packtpub.springhibernate.ch11.NotificationService">
 <property name="notifier">
 <ref local="notifier"/>
 </property>
 <property name="retryOnFail">
 <value>true</value>
 </property>
</bean>
<bean id="notifier" class="com.packtpub.springhibernate.ch11.
EmailNotifier">
</bean>

The configured advice can now be applied to any number of objects, including the
StudentService instance, managed by the Spring container. Here's how you would
apply the implemented advice to the configured StudentService object:

<bean id="studentServiceTarget"
 class="com.packtpub.springhibernate.ch11.StudentService">
 ...
</bean>
<bean id="studentService"
 class="org.springframework.aop.framework.autoproxy.
BeanNameAutoProxyCreator">
 <property name="beanNames">
 <value>studentServiceTarget</value>
 </property>
 <property name="interceptorNames">
 <list>
 <value>notificationThrowsAdvice</value>
 </list>
 </property>
</bean>

You can look up the IoC container to use StudentService object as follows:

ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "com/packtpub/springhibernate/ch11/beans.xml");
StudentServiceInf studentService =
 (StudentServiceInf)ctx.getBean("studentService");

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[287]

Note that the bean with the name studentService refers to an object of org.
springframework.aop.framework.autoproxy.BeanNameAutoProxyCreator,
instead of StudentService, which works as a proxy for the StudentService
instance configured by the IoC container. This proxy is responsible for
applying all advice specified through the interceptorNames property. The
BeanNameAutoProxyCreator instance also uses another property with the
name beanNames, referring to the target objects to which the advice should be
applied (studentServiceTarget in our example, which refers to the configured
StudentService object).

You have many options when applying a Spring advice to target objects. However,
the result will be the same. Don't worry about the details. We will discuss those later
in this chapter.

In this example, we have not specified the target methods to which
the advice should be applied. In such cases, the advice is applied to all
methods of the target object. However, as you will see, Spring lets you
select the target methods through pointcut objects.

Now that you have sufficient background in AOP implementation, let's explore the
Spring AOP framework in more detail.

Spring's AOP framework
Spring provides a rich and powerful AOP framework. In this section, we will discuss
the different kinds of advice Spring provides, how advice can join with a target
object through joinpoints, and how the joinpoints can be accumulated as pointcuts.
Finally, we will look at the different proxy generator classes Spring provides.

Advice
The most important part of AOP is advice. An advice defines the custom behavior
or reaction that is accomplished at joinpoints. Spring wraps a method invocation in
a chain of interceptors behind the proxy object. Each interceptor is responsible for
applying an advice.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[288]

Spring allows us to use different kinds of advice, and each is useful for a particular
case. The following table lists these advice types:

Advice Type Description
Around advice This type of advice provides an opportunity to implement

custom code to be executed before or after method invocation.
This advice is an implementation of the org.aopalliance.
intercept.MethodInterceptor interface. This interface
does not belong to Spring. Instead, it is part of the AOP
Alliance API (discussed in this chapter).

Before advice This type of advice is exposed through the org.
springframework.aop.BeforeAdvice interface. It lets us
implement an advice to be executed before method invocation.

After returning advice This type of advice is exposed through the org.
springframework.aop.AfterReturningAdvice
interface. It lets us implement an advice to be executed after
normal execution of the method when no exception is thrown.

Throws advice This type of advice is exposed through the org.
springframework.aop.ThrowsAdvice interface. It lets us
implement an advice to be executed after abnormal execution
of the method when an exception is thrown.

Additionally, you can define a custom advice in situations when none of the types
listed in the table above suits your needs. Let's discuss how each of these advice
types is implemented and used.

The AOP alliance
The AOP Alliance is an API that includes a small set of interfaces and
provides a common foundation for different AOP implementations. This
means different AOP implementations use this API to provide reusability
for advice or other AOP components. For the most part, Spring defines
its own kinds of advice based on this API. It allows us to reuse the
implemented Spring advice with other AOP frameworks that support
the AOP Alliance API. The most significant interface in this API is org.
aopalliance.intercept.MethodInterceptor, which is used to
define an advice.
The AOP Alliance libraries are shipped with the Spring distribution.
You can check out this API's source files at http://aopalliance.
sourceforge.net.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[289]

Around advice
The around advice is a basic advice that lets us implement code to be executed
before, after, or before and after the method invocation. This advice is provided
by the AOP Alliance API through the MethodInterceptor interface, shown in the
following code:

package org.aopalliance.intercept;

import org.aopalliance.intercept.Interceptor;
import org.aopalliance.intercept.MethodInvocation;

public interface MethodInterceptor extends Interceptor {
 Object invoke(MethodInvocation invocation) throws Throwable;
}

This interface includes only one invoke() method, which takes an object of org.
aopalliance.intercept.MethodInvocation as an argument, and uses Object
as the return type. The MethodInvocation argument exposes the target method
being invoked with its arguments and the target joinpoint. The return value of the
invoke() method represents the result of the target method invocation. To execute
code before or after method execution, you need to implement custom code before or
after the MethodInvoation.proceed() call, respectively. The following code shows
an example of MethodInterceptor implementation, which measures and logs the
time taken by the target method invocation:

package com.packtpub.springhibernate.ch11;

import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

import org.apache.log4j.Level;
import org.apache.log4j.Logger;

public class PerformanceInterceptor implements MethodInterceptor {
 private static Logger logger =
 Logger.getLogger(PerformanceInterceptor.class.getName());

 public Object invoke(MethodInvocation invocation) throws Throwable
{
 long start = System.currentTimeMillis();
 try {
 Object result = invocation.proceed();
 return result;
 }
 finally {
 long end = System.currentTimeMillis();
 long timeMs = end - start;

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[290]

 logger.log(Level.INFO, "Method: " +
 invocation.getMethod().getName() +
 " took: " + timeMs + "ms.");
 }
 }
}

The call of the proceed() method on the MethodInvocation instance calls the next
associated interceptor in the chain. If no other interceptor is associated with the
joinpoint, the joinpoint itself is called. You can also throw an exception if you do not
want the target method to be called. This mechanism is particularly useful when you
want to control the client's access to the target method.

Before advice
Spring provides the org.springframework.aop.MethodBeforeAdvice interface,
which can be used to implement a method interceptor that is always executed
before the joinpoint. The following code shows the MethodBeforeAdvice interface,
extending the generic org.springframework.aop.BeforeAdvice interface used for
any kind of joinpoint:

package org.springframework.aop;

import java.lang.reflect.Method;

public interface MethodBeforeAdvice extends BeforeAdvice {
 void before(Method method, Object[] args, Object target) throws
Throwable;
}

The only before() method in this interface takes three arguments of type java.lang.
reflect.Method, Object[], and Object, representing the target method being
called, the target method arguments, and the target object, respectively. The return
type of this method is void, which means this advice does not allow changing of the
method's return value. However, the before() method throws Throwable exception,
which lets you throw an exception to break the interceptor chain.

The following code shows a simple before advice, which logs the method
invocation's starting time:

package com.packtpub.springhibernate.ch11;

import org.springframework.aop.MethodBeforeAdvice;

import java.lang.reflect.Method;

import org.apache.log4j.Level;
import org.apache.log4j.Logger;

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[291]

public class LogBeforeAdvice implements MethodBeforeAdvice {
 private static Logger logger =
 Logger.getLogger(LogBeforeAdvice.class.getName());

 public void before(Method method, Object[] args, Object target)
 throws Throwable {
 long start = System.currentTimeMillis();
 logger.log(Level.INFO, method.getName()+" starts at " +
start);
 }
}

After returning advice
The org.springframework.aop.AfterReturningAdvice interface, shown in the
following code, lets you implement an advice to be executed after the method has
finished successfully, without throwing an exception:

package org.springframework.aop;

import java.lang.reflect.Method;

public interface AfterReturningAdvice extends AfterAdvice {
 void afterReturning(Object returnValue,
 Method method,
 Object[] args,
 Object target) throws Throwable;
}

The afterReturning()method of this interface takes instances of Object,
java.lang.reflect.Method, Object[], and Object as arguments, which represent,
the return value of the target method, the target method, the target method's
arguments, and the target object, respectively. As with the before() method in the
BeforeMethodAdvice, the afterReturning() method returns void; and it does not
allow changing of the return value.

The following code shows an implementation of AfterReturningAdvice, which
logs the finishing time of the method invocation:

package com.packtpub.springhibernate.ch11;

import org.springframework.aop.AfterReturningAdvice;
import java.lang.reflect.Method;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;

public class LogAfterAdvice implements AfterReturningAdvice {
 private static Logger logger = .
 Logger.getLogger(LogAfterAdvice.class.getName());

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[292]

 public void afterReturning(Object object, Method method,
 Object[] args, Object target)
 throws Throwable
{
 long end = System.currentTimeMillis();
 logger.log(Level.INFO, method.getName()+ " ends at " + end);
 }
}

This AfterReturningAdvice is only applied to target methods
that have finished successfully without throwing an exception. The
implemented advice in the code above only logs the finishing time of
successful method execution.

Throws advice
The final type of advice provided by Spring is exposed through the
org.springframework.aop.ThrowsAdvice interface, shown in the
following code:

package org.springframework.aop;

public interface ThrowsAdvice extends AfterAdvice {
}

This allows you to implement an advice that is applied when the target method
throws an exception. Note that the ThrowsAdvice interface does not expose any
method to be implemented. You have an option to implement any number of
methods with the following signature:

afterThrowing([Method, args, target,] Throwable)

Method, args, and target represent, the target method being called, the target
method's arguments, and the target object, respectively. Throwable exception
represents a subclass of the java.lang.Throwable class that is thrown in the target
method and causes this advice to be called. In all of the methods that implement this
signature, only Throwable is mandatory. The other arguments are optional, meaning
you can implement all three of the other arguments, or omit them all.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[293]

The following code shows a ThrowsAdvice that logs the type of the exception
thrown by the target method:

package com.packtpub.springhibernate.ch11;

import org.springframework.aop.ThrowsAdvice;

import java.lang.reflect.Method;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;

public class LogsThrowsAdvice implements ThrowsAdvice {
 private static Logger logger =
 Logger.getLogger(LogsThrowsAdvice.class.getName());

 public void afterThrowing(Method method,
 Object[] args,
 Object target,
 Exception ex) throws Throwable {
 logger.log(Level.INFO, ex.getClass()+" thrown in " + method);
 }
}

The afterThrowing()method can be overloaded with different types of exception
as arguments to handle different exceptions differently. The following code shows a
throws advice that logs java.io.IOException, but notifies the system administrator
when an org.hibernate.HibernateException is thrown:

package com.packtpub.springhibernate.ch11;

import org.springframework.aop.ThrowsAdvice;
import java.io.IOException;
import org.hibernate.HibernateException;

import org.apache.log4j.Level;
import org.apache.log4j.Logger;

public class CustomExceptionsThrowsAdvice implements ThrowsAdvice {
 private static Logger logger =
 Logger.getLogger(CustomExceptionsThrowsAdvice.class.getName());
 NotificationServiceInf notificationService;

 public void afterThrowing(HibernateException ex) throws Throwable
{
 notificationService.notify(ex.getMessage());
 }

 public void afterThrowing(IOException ex) throws Throwable {
 logger.log(Level.INFO, "An IOException occured");
 }

 public void setNotificationService(NotificationServiceInf
notificationService){
 this.notificationService = notificationService;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[294]

Pointcuts
As mentioned earlier, a pointcut is an object comprising a set of joinpoints, which
identifies where advice applies. Here are some examples of pointcuts:

All methods of a class
All methods of a class with names that start with do
All getter or setter methods of a class
All methods returning void
All methods that do not have any arguments

All of these pointcuts are called static because they are identified based on static
information before runtime. However, it is possible to determine a pointcut based on
runtime information. For instance, as you will see with an upcoming example, you
can define a pointcut that identifies all methods that are passed null as their first
argument at runtime. Such pointcuts are called dynamic.

Pointcuts only specify the target methods, regardless of the target
object to which the methods may belong.

The following table briefly describes all pointcuts shipped with Spring:

Spring Pointcut Description
Setter and getter pointcut The org.springframework.aop.support.

Pointcuts class has two final static members, which
determine pointcuts for the getter and setter methods.

Name matched pointcut This type is presented through the org.
springframework.aop.support.
NameMatchMethodPointcut class, allowing us to
select the target methods based on their names. With
this pointcut, regular expressions cannot be used for
method names.

Regular expression pointcut This type is provided through org.springframework.
aop.support.JdkRegexpMethodPointcut class,
allowing us to select the target methods with the Java 1.4
regular expression API. The target method name(s) are
specified with regular expressions through the pattern
or patterns properties, respectively.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[295]

Spring Pointcut Description
Static matcher pointcut This type is provided through the

org.springframework.aop.support.
StaticMethodMatcherPointcut class to select target
methods based on static information, such as the method
names, the number of arguments, the arguments' types,
and so on.

Dynamic matcher pointcut This type, provided through the
org.springframework.aop.support.
DynamicMethodMatcherPointcut class, allows us to
select target methods based on the argument values at
runtime, in addition to static information provided by the
static matcher pointcut.

As you will see, the pointcuts listed in the table above may be used for programmatic
proxy creation, as well as configuration in a Spring factory through setter injection.

The sections that follow explain each pointcut and how it is used, both
programmatically (through the Java code) and declaratively (through the
Spring context).

Setter and getter pointcut
The org.springframework.aop.support.Pointcuts class defines two static
members for declaring a setter or getter method as a pointcut. These members are:
GETTERS and SETTERS. Each specifies JavaBean-style getter methods and setter
methods, respectively, of any class. For instance, you may create a pointcut object
programmatically as follows:

Pointcut setterPointcut = org.springframework.aop.support.Pointcuts.
SETTERS;
Pointcut getterPointcut = org.springframework.aop.support.Pointcuts.
GETTERS;

Alternatively, you may define a pointcut object declaratively in the Spring context
as follows:

<bean id="getterPointcut"
 class="org.springframework.aop.support.Pointcuts.GETTERS"/>

This pointcut specifies all getter methods of the target object.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[296]

Name matched pointcut
The org.springframework.aop.support.NameMatchMethodPointcut class allows
us to create a pointcut that selects target methods with a specific name. This class
provides three methods for specifying the target methods' names:

public void setMappedName(String methodName)
public void setMappedNames(String[] methodNames)
public NameMatchMethodPointcut addMethodName(String s)

setMappedName() and setMappedNames() take a String or an array of Strings
that represents the name or the names of target method or methods, respectively.
Additionally, the addMethodName() method allows us to specify the target
method names multiple times. Here is an example of programmatic creation of
NameMatchMethodPointcut, which specifies all of the methods with the name
saveStudent or updateStudent in the target object:

NameMatchMethodPointcut nmpc = new NameMatchMethodPointcut();
nmpc.setMappedNames(new String[]{"saveStudent", "updateStudent"});

The same object may be created through the addMethodName() as follows:

NameMatchMethodPointcut nmpc =
 new NameMatchMethodPointcut().addMethodName("saveStudent").
 addMethodName("updateStudent");

Alternatively, you may configure an instance declaratively in the Spring context,
as follows:

<bean id="studentDaoPointcut"
 class="org.springframework.aop.support.NameMatchMethodPointcut">
 <property name="mappedNames">
 <list>
 <value>saveStudent</value>
 <value>updateStudent</value>
 </list>
 </property>
</bean>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[297]

Regular expression pointcuts
This type of pointcut lets you specify the target method names with Java regular
expressions. A regular expression allows you to describe the names of the target
methods with strings. These strings may use wildcards to match or exclude groups
of characters and markers that are required for matching in particular places. This
type of pointcut is provided through the org.springframework.aop.support.
JdkRegexpMethodPointcut class. The following are the most useful methods of
this class:

public void setPattern(String pattern)
public void setPatterns(String[] patterns)
public void setExcludedPattern(String pattern)
public void setExcludedPatterns(String[] patterns)

The setPattern()and setPatterns() methods allow us to specify, a regular
expression or an array of regular expressions that the target method names should
match. Two other methods, setExcludedPattern() and setExcludedPatterns(),
let us determine a regular expression and an array of regular expressions that the
target method names should not match.

Refer to http://java.sun.com/docs/books/tutorial/
essential/regex for more information about the regular expression
syntax and wildcards.

Here is an example of using JdkRegexpMethodPointcut to select all methods whose
names end with either Student or Course:

JdkRegexpMethodPointcut pc = new JdkRegexpMethodPointcut();
pc.setPatterns(new String[]{".*Student", ".*Course"});

This is the declarative approach for selecting the same methods:

<bean class="org.springframework.aop.support.
JdkRegexpMethodPointcut">
 <property name="patterns">
 <list>
 <value>.*Student</value>
 <value>.*Course</value>
 </list>
 </property>
</bean>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[298]

Static matcher pointcut
Using this pointcut, you can select target methods based on static information of
target methods and target classes, the information that can be estimated at compile
time. This information includes the package name, class name, method name, the
type of method's arguments, and so on. This type of pointcut is provided through
org.springframework.aop.support.StaticMethodMatcherPointcut. To use it,
create a subclass of StaticMethodMatcherPointcut, either as an individual class
or on the fly (as you will see in the example), and implement its abstract matches()
method. The matches() method has this signature:

public boolean matches(Method method, Class targetClass) {
 //select the target method
}

The matches() method takes two arguments: an instance of java.lang.reflect.
Method and a java.lang.Class instance. The first argument specifies the selected
target method and the second argument determines the class to which the target
method belongs. Here's an example:

public static Pointcut myStaticPointcut = new
StaticMethodMatcherPointcut() {
 public boolean matches(Method method, Class targetClass) {
 String className = targetClass.getName();
 String methName = method.getName();
 if((className.indexOf("Test")==-1)&&(methName.
indexOf("Student")>-1)){
 return true;
 }
 return false;
 }
};

This pointcut selects the methods whose name includes the word Student, and
whose classname does not contain the word Test.

Dynamic Matcher Pointcut
A dynamic matcher pointcut lets you create pointcuts that select target methods
based on -information at runtime, which includes the actual values passed to the
methods at runtime. This kind of pointcut is a superset of static matcher pointcut
that was already discussed. This means you can use dynamic matcher pointcut
to select targets based on the static information, estimated at compile time, and
dynamic information at runtime. To implement this type of pointcut, create a
subclass of org.springframework.aop.support.DynamicMethodMatcherPointcut
and override its abstract matches() methods. The matches() methods in the class
have these signatures:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[299]

public boolean matches(Method method, Class targetClass) {
 // select the target method
}
public boolean matches(Method method, Class targetClass, Object[]
args) {
 // select the target method
}

The two-argument matches() method is the same as you already saw for the static
matcher pointcut, with the same functionality. The other variant of this method takes
an array of Object as an extra argument, representing the arguments of the target
method. You may evaluate these arguments to check whether the current method
satisfies your criteria. Note that the three-argument matches() method is only called
for target methods that satisfy the two-argument method.

As with the static matcher pointcut, you may create an individual subclass, or
implement a subclass on the fly. Here is an example:

public static Pointcut myDynamicPointcut = new
DynamicMethodMatcherPointcut() {
 public boolean matches(Method method, Class targetClass) {
 String className = targetClass.getName();
 String methName = method.getName();
 if((className.indexOf("Test")==-1) && (methName.
 indexOf("Student")>-1)) {
 return true;
 }
 return false;
 }

 public boolean matches(Method method, Class targetClass,
 Object[] args) {
 if ((args.length > 0) && (args[0] != null)) {
 return true;
 }
 return false;
 }
};

This pointcut selects methods whose name includes the word Student, that have at
least one argument (the first of which is not null), and whose classname does not
contain the word Test.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[300]

Pointcut composition
It is possible to combine pointcuts to create a complex pointcut. The resulting
pointcut may use a combination of logic to select the target methods. The
org.springframework.aop.support.Pointcuts class provides the union()
and intersection() methods, which can be used for this purpose as follows:

public static Pointcut union(Pointcut p1, Pointcut p2)
public static Pointcut intersection(Pointcut p1, Pointcut p2)

The union() result of two pointcuts is a pointcut that selects any method which
satisfies at least one of the input pointcuts. The intersection() result is a pointcut
that selects only methods matched by both pointcuts.

Unfortunately, there is no way to compose pointcuts declaratively.

Advisor
Spring uses an extra object, called an advisor, to apply advice to the target methods.
This object wraps an advice, and a pointcut and is responsible for applying the
advice to the pointcut.

To create an advisor, you need to implement the org.springframework.aop.
Advisor interface. Spring provides a set of convenient implementations, which
relieve you from having to implement a new advisor. A common implementation
that can be used with any Spring advice type is org.springframework.aop.
support.DefaultPointcutAdvisor. A DefaultPointcutAdvisor instance may be
created programmatically with an already created pointcut and advice as follows:

DefaultPointcutAdvisor advisor = new DefaultPointcutAdvisor(pointcut,
advice);

Alternatively, you can create the advisor declaratively in the Spring context
as follows:

<bean name ="advisor"
 class="org.springframework.aop.support.DefaultPointcutAdvisor">
 <property name="pointcut">
 <ref local="pointcut" />
 </property>
 <property name="advice">
 <ref local="advice" />
 </property>
</bean>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[301]

You may use an advice without specifying any pointcut. When you do,
the advice is applied to all methods of the target object. Additionally,
Spring lets you use an advice without an advisor. The advice is
automatically wrapped in an advisor object and applied to all methods
of the target object.

Proxy configuration and creation
The proxy object starts the invocation chain of advisors, which ends with the target
object. Like many other AOP components, Spring allows us to create proxy objects
both programmatically and declaratively. To create a proxy object, you need to
configure it with any already defined Spring proxy classes. There are proxy factories
to create a proxy object whenever it is needed. The following table lists the essential
proxy factory types:

Proxy Factory Type Description
ProxyFactory This is used to create proxy objects

programmatically, without an IoC container.
ProxyFactoryBean This is used to configure and create proxy

objects in the IoC manner with the Spring
application context.

AbstractAutoProxyCreator This abstract class defines a proxy factory used
to implement automatic proxying.

TransactionProxyFactoryBean This is a specialization of the
ProxyFactoryBean used to create a
transactional proxy, discussed in Chapters 12
and 13.

Let's see how each factory can be used to create proxy objects.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[302]

Using ProxyFactory
Spring provides the org.springframework.aop.framework.ProxyFactory class to
create proxy objects programmatically. At the start of this chapter, you saw a simple
example. The following table describes some of its useful methods:

Method Description
void addAdvice(Advice advice) This method takes an org.aopalliance.

aop.Advice object as its argument, and
adds it to the tail of the advice chain.

void addAdvisor(Advisor advisor) This method adds an advisor of type
org.springframework.aop.Advisor.

void addInterface(Class aClass) This method adds a new proxied interface.
If it is not used, the AOP framework
automatically proxies all interfaces
implemented by the target.

void setTarget(Object o) This method sets the given object as the
target to which all advice is applied.

java.lang.Object getProxy() This method creates and returns a new
proxy according to the settings used for
this factory.

Using ProxyFactoryBean
The most commonly used proxy factory in Spring's AOP framework is
ProxyFactoryBean. It allows us to configure the proxy factory in the Spring context
as a bean of type org.springframework.aop.framework.ProxyFactoryBean.

To use this proxy factory, you need to configure the required objects, such as
advisors, advice, and pointcuts, as individual beans in the Spring context. Then,
configure the ProxyFactoryBean instance with its required properties, which are
explained in the following table:

Property Name Meaning
proxyInterfaces This property specifies the interfaces implemented by the target

object, which should be proxied.
interceptorNames This property indicates a list of names of advice, advisors,

or interceptors linking the advice/advisor/interceptor
chain together.

target This property determines the target object to which the
advisor/interceptor chain is applied.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[303]

Here is an example of ProxyFactoryBean configuration:

<bean id="studentService"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="proxyInterfaces">
 <value>com.packtpub.springhibernate.ch11.StudentServiceInf</
value>
 </property>
 <property name="target">
 <ref local="studentService"/>
 </property>
 <property name="interceptorNames">
 <list>
 <value>advisor</value>
 <value>advice</value>
 </list>
 </property>
</bean>

The advice, advisors, or interceptors specified through the
interceptorNames property are applied based on the order in
which they have been specified.

Assembling the AOP components
We can now arrange all of the AOP components and see what they look like.
The following code shows the Spring context that includes all of the AOP
component definitions:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
2.5.xsd">

 <!--advice declaration -->
 <bean id="advice" class="com.packtpub.springhibernate.ch11.
LogAfterAdvice">
 </bean>

 <!-- pointcut declaration -->
 <bean id="pointcut"
 class="org.springframework.aop.support.
JdkRegexpMethodPointcut">
 <property name="pattern">
 <value>.get*</value>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[304]

 </property>
 </bean>

 <!--advisor declaration, combined of the advice and pointcut-->
 <bean name ="advisor"
 class="org.springframework.aop.support.
DefaultPointcutAdvisor">
 <property name="pointcut">
 <ref local="pointcut" />
 </property>
 <property name="advice">
 <ref local="advice" />
 </property>
 </bean>

 <bean id="notifier"
 class="com.packtpub.springhibernate.ch11.EmailNotifier">
 </bean>

 <bean id="notificationService"
 class="com.packtpub.springhibernate.ch11.
NotificationService">
 <property name="notifier">
 <ref local="notifier"/>
 </property>
 <property name="retryOnFail">
 <value>true</value>
 </property>
 </bean>

 <!-- target object declaration -->
 <bean id="studentServiceTarget"
 class="com.packtpub.springhibernate.ch11.StudentService">
 <property name="studentDao">
 <bean class="com.packtpub.springhibernate.ch11.
StudentDaoImpl"/>
 </property>
 <property name="notificationService">
 <ref local="notificationService" />
 </property>
 </bean>

 <!-- proxy object configuration -->
 <bean id="studentService"
 class="org.springframework.aop.framework.
ProxyFactoryBean">
 <property name="proxyInterfaces">
 <value>com.packtpub.springhibernate.ch11.
StudentServiceInf</value>
 </property>
 <property name="target">
 <ref local="studentServiceTarget"/>
 </property>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[305]

 <property name="interceptorNames">
 <list>
 <value>advisor</value>
 </list>
 </property>
 </bean>
</beans>

As you can see, the configuration file declares all of the AOP components, such as
advice, pointcut, advisor, target, and the proxy object. In the code above, all of these
components are highlighted.

Moving to Spring 2.x's AOP
So far in this chapter, we have discussed only AOP implementations that
were introduced in Spring 1.2.x. Spring 2.0 comes with a different AOP
framework. The new AOP framework is fully integrated with AspectJ. AspectJ
(http://www.eclipse.org/aspectj), an extension to the Java language, provides
aspect-oriented programming features. The most valuable feature of AspectJ, in
addition to its simplicity and maturity, is its pointcut expression language, which
lets us express pointcuts with simple string literals.

With its AspectJ support, Spring 2.0 adds a new term to its AOP terminology:
aspect. As you will see, an aspect is basically an advisor which encapsulates a
pointcut and an advice.

With Spring 2.0, you can still use the classic AOP features provided
by Spring 1.2.x.

The most significant improvements of the Spring 2.0 AOP can be summarized
as follows:

Easier AOP configuration: Spring 2.x introduces new schema support
for defining aspects backed by aspect definition with the general
<bean> element.
Support for AspectJ integration: Spring 2.x takes advantage of AspectJ,
a powerful, full-blown AOP framework for Java. Additionally, Spring 2.x
supports aspects defined using the @AspectJ annotations. These aspects,
which can be shared between AspectJ and Spring AOP, require only
simple configuration.
Support for the bean name pointcut element: Spring 2.5 introduces
support for the bean(...) pointcut element, matching specific named
beans according to Spring-defined bean names.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[306]

Let's look at AOP configuration with the AOP schema, and explore how to use new
features of the Spring AOP framework.

Classic AOP development with Spring allows us to implement and use
only four types of advice: MethodInterceptor, MethodBeforeAdvice,
AfterReturningAdvice, and ThrowsAdvice. Spring 2.0 has added another kind
of advice, called after advice, which is called when the joinpoint method returns
successfully, or breaks with an exception.

Moreover, with Spring 2.x you must implement a subclass of a Spring or an
AspectJ-specific class to define an advice. However, you can turn any method of
any class into an advice method. This means that any ordinary class can be an
advice. To keep things simple, let's assume that we are going to apply a simple
advice to pointcuts. The advice prints out a message in the application console when
the joinpoint method executes. The following code shows the MessageWriter class
that does this with its writeMessage() method:

package com.packtpub.springhibernate.ch11;

public class MessageWriter {
 public void writeMessage() {
 System.out.print("Simple Message");
 }
}

Let's see how this advice can be configured in the Spring context and applied to the
joinpoint method.

To use the new features of Spring 2.0 AOP, you need the AspectJ library,
distributed with Spring, in your application classpath.

AOP configuration with the AOP schema
To use Spring 2.0 AOP's new features, you must declare the AOP namespace (aop)
with the actual schema location (http://www.springframework.org/schema/aop/
spring-aop-2.5.xsd) in the Spring context, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 spring-beans-2.5.xsd

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[307]

 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/
 spring-aop-2.5.xsd">

</beans>

This configuration lets you use proprietary AOP XML elements in the Spring
configuration file. However, you still have an option to configure AOP components
classically, as discussed with Spring 1.2.x.

To configure AOP components, add the <aop:config> element to the Spring
configuration file, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
beans-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-
aop-2.5.xsd">
 <aop:config>

 </aop:config>

</beans>

All of the AOP components are configured through nested elements within the
<aop:config>. These elements are as follows:

<aop:aspect>

<aop:pointcut>

<aop:before>

<aop:after-returning>

<aop:after-throwing>

<aop:after>

<aop:around>

The subsequent sections discuss how each of these elements is used to declare an
AOP component.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[308]

Defining aspects
The <aop:aspect> element is used within the <aop:config> element to define an
aspect. Each <aop:aspect> element comes with two attributes, id and ref. The id
attribute specifies an identifier for the aspect, and ref refers to another bean defined
in the configuration file. The bean referred by the ref attribute is a simple Java object
defined as an ordinary bean inside the configuration file. Actually, this bean specifies
the advice object. In our example, this bean represents the MessageWriter object,
and can be configured as follows:

<bean id="messageWriter"
 class="com.packtpub.springhibernate.ch11.MessageWriter">
</bean>

<aop:config>
 <aop:aspect id="aspect1" ref="messageWriter">

 ...
 </aop:aspect>
</aop:config>

This code simply defines an aspect with the aspect1 identifier. This aspect refers to
the ordinary messageWriter bean as the advice. This aspect configuration won't do
anything. We must complete the <aop:aspect> configuration with pointcuts and
advice. Let's see how the other elements come into play.

Defining pointcuts
The <aop:pointcut> element defines a pointcut. A pointcut can be defined either
inside an <aop:config> element, to be shared across several aspects and advisors,
or directly inside an <aop:aspect> element, to be used proprietarily for the aspect
specified through the <aop:aspect>.

The <aop:pointcut> element takes id and expression as attributes. id assigns
an identifier to the pointcut, which lets you refer to the pointcut when the aspect is
defined. The expression attribute determines the joinpoints with which the pointcut
is associated through the AspectJ pointcut language. The following code shows an
example of a pointcut definition directly within the <aop:config> element:

<aop:config>
 <aop:pointcut id="servicesPointcut"
 expression="execution(* com.packtpub.springhibernate.
ch11.*Service.*(..))"/>
</aop:config>

This pointcut selects all of the methods defined in the service classes, the classes
located in the com.packtpub.springhibernate.ch11 package whose names end
with Service.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[309]

The AspectJ language's rules are easy and simple. They can be summarized
as follows:

Pointcut designators: The most significant designators are execution() and
within(). The execution() method allows matching execution joinpoints.
The within() method limits matching to joinpoints with certain types. For
example, execution(public * *(..)) selects all public methods, and
within(com.service.*) selects all methods located in classes in the
com.service package.
Pointcut compositors: These are the AND (&&), OR(||), and NOT (!)
operators that narrow down the selection. For example, execution(*
get(..))&&execution(* set(..)) selects all setter and getter methods.
Visibility selectors: These are public and protected operators that narrow
down the selection to only public or protected methods. For example,
execution(public * *(..)) selects all public methods.
Package, class, and method selectors: These selectors are the full or partial
name of a package, a class, and a method that narrow down the selection
to specific packages, classes, and methods. For example, execution
(* set*(..)) selects all methods starting with the word "set" in any
class and in any package, and * com.packtpub.springhibernate.
ch11.*Service.*(..) selects all methods of the service classes.
Annotations: These are annotations in Java code to select methods. For
example, @target(org.springframework.transaction.annotation.
Transactional) selects all methods in the target object annotated with
@Transactional.

For a full discussion of AspectJ's pointcut language, see the AspectJ
Programming Guide at http://www.eclipse.org/aspectj/
doc/released/progguide/index.html.

Defining an advice
As mentioned earlier, with Spring 2.0 you can define five kinds of advice. Each
advice is defined as an individual element within <aop:config>. The following
subsections discuss how to implement and define these kinds of advice.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[310]

Before advice
A before advice executes before a joinpoint method's execution. This advice is
defined through the <aop:before> element within <aop:aspect>. Here is
an example:

<bean id="messageWriter"
 class="com.packtpub.springhibernate.ch11.MessageWriter">
</bean>

<aop:config>
 <aop:pointcut id="servicesPointcut"
 expression="execution(* com.packtpub.springhibernate.
ch11.*Service.*(..))"/>

 <aop:aspect id="aspect1" ref="messageWriter">
 <aop:before pointcut-ref="servicesPointcut"
method="writeMessage" />
 </aop:aspect>
</aop:config>

The pointcut-ref attribute refers to a configured pointcut. The method
attribute specifies the method of the messageWriter bean to be used as
the advice method. The <aop:before> element turns the writerMessage()
method on the messageWriter bean into an advice method, so the
MessageWriter.writeMessage() method is invoked before any
method matching the joinpoints is executed.

After returning advice
An after returning advice executes after the method successfully returns without
throwing an exception. The <aop:after-returning> element is used within
<aop:aspect> to define an after returning advice. Here's an example:

<bean id="messageWriter"
 class="com.packtpub.springhibernate.ch11.MessageWriter">
</bean>

<aop:config>
 <aop:pointcut id="servicesPointcut"
 expression="execution(* com.packtpub.springhibernate.
ch11.*Service.*(..))"/>

 <aop:aspect id="aspect1" ref="messageWriter">
 <aop:after-returning pointcut-ref="servicesPointcut"
method="writeMessage"/>

 </aop:aspect>
</aop:config>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[311]

The after returning advice can be used with an additional attribute called returning,
as shown here:

<aop:after-returning pointcut-ref="servicesPointcut"
method="writeMessage"
 returning="retValue"/>

This attribute lets us get hold of the return value within the advice body. The
returning attribute specifies the name of the parameter of the advice to which the
return value of the method matched by the pointcut is bound. With the preceding
configuration, the writeMessage() method would have this signature:

public void writeMessage(Object retValue)

After throwing advice
This advice executes after the joinpoint throws an exception instead of returning
normally. To define this kind of advice, use the <aop:after-throwing> element
within the <aop:aspect> element. The <aop:throwing> element uses an additional
throwing attribute, which specifies the name of the method parameter to which the
thrown exception should be bound. Here is an example:

<bean id="messageWriter"
 class="com.packtpub.springhibernate.ch11.MessageWriter">
</bean>

<aop:config>
 <aop:pointcut id="servicesPointcut"
 expression="execution(* com.packtpub.springhibernate.
 ch11.*Service.*(..))"/>

 <aop:aspect id="aspect1" ref="messageWriter">
 <aop:after-throwing pointcut-ref="servicesPointcut"
 method="writeMessage" throwing="thrownException"/>
 </aop:aspect>
</aop:config>

With the preceding configuration, the writeMessage() method would have
this signature:

public void writeMessage(Exception thrownException)

Here, the exception thrown by the method matched by the pointcut is passed to the
writeMessage() method through the thrownException argument.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[312]

After advice
An after advice executes after method execution, whether the method returns
successfully or throws an exception. This kind of advice is analogous to the
finally block in Java code, which is always executed when the try or the catch
block executes. This advice is defined through the <aop:after> element within
<aop:aspect>, as in this example:

<bean id="messageWriter"
 class="com.packtpub.springhibernate.ch11.MessageWriter">
</bean>

<aop:config>
 <aop:pointcut id="servicesPointcut"
 expression="execution(* com.packtpub.springhibernate.
ch11.*Service.*(..))"/>

 <aop:aspect id="aspect1" ref="messageWriter">
 <aop:after pointcut-ref="servicesPointcut"
method="writeMessage"/>
 </aop:aspect>
</aop:config>

The writeMessage() method on the messageWriter instance is called whenever
the method matched by the pointcut finishes.

Around advice
This kind of advice lets you execute code before or after joinpoints. Similar to what
you have already seen in Spring 1.2.x, the around advice can prevent the execution
of the joinpoint method. The <aop:around> element is used within <aop:aspect> to
define the around advice. Here's an example:

<bean id="messageWriter"
 class="com.packtpub.springhibernate.ch11.MessageWriter">
</bean>

<aop:config>
 <aop:pointcut id="servicesPointcut"
 expression="execution(* com.packtpub.springhibernate.
ch11.*Service.*(..))"/>

 <aop:aspect id="aspect1" ref="messageWriter">
 <aop:around pointcut-ref="servicesPointcut"
method="writeMessage"/>
 </aop:aspect>
</aop:config>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[313]

The around advice is the only advice that needs to be AspectJ-aware. With this kind
of advice, the method of the advice class is implemented with an extra argument
of type org.aspectj.lang.ProceedingJoinPoint. The ProceedingJoinPoint
method is analogous to the AOP Alliance's MethodInterceptor, which lets you
control the joinpoint method's execution, whether the joinpoint method executes
or is ignored. The following code shows the MessageWriter class, which now is
an AspectJ around advice:

package com.packtpub.springhibernate.ch11;

import org.aspectj.lang.ProceedingJoinPoint;

public class MessageWriter {

 public void writeMessage(ProceedingJoinPoint call) throws
Throwable {
 System.out.println("Before Target");
 call.proceed();
 System.out.println("After Target");
 }
}

Note that the custom code executes before and after invocation of the
call.proceed() method.

Advice parameters
You may wonder how an advice can access joinpoint methods. The answer is
through an additional attribute named arg-names. This attribute lets you specify
the joinpoint method's arguments which are provided for the advice method. For
instance, suppose the joinpoint method uses two arguments: beforeMessage and
afterMessage. The <aop:advice> element can be configured as follows, so that
both arguments are provided for the advice method:

<aop:aspect id="aspect1" ref="messageWriter">
 <aop:around pointcut-ref="servicesPointcut" method="writeMessage"
 arg-names="beforeMessage, afterMessage"/>
</aop:aspect>

As you can see, the arguments are specified as a comma-separated list of
argument names. By this, the writeMessage() method of the advice would
have the following signature:

public void writeMessage(String beforeMessage, String afterMessage)

Note that the beforeMessage and afterMessage arguments, which are the joinpoint
method's arguments, are provided for manipulation in the advice method.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring AOP

[314]

If you've tried to execute the examples in this chapter, you've seen that
they work without a proxy object defined. Spring 2.0 uses automatic
proxy-type detection for all advised objects.

Summary
In this chapter, we discussed Aspect-Oriented Programming (AOP) technology as a
complementary approach to Object-Oriented Programming (OOP). AOP technology
defines the aspect, a new concept in system development.

AOP development involves five components: advice, pointcut, advisor, target object,
and proxy. Advice specifies the logic that is performed. A pointcut determines
the target methods that are advised. An advisor, or aspect, pulls an advice and a
pointcut together, and is responsible for applying the advice to the pointcut. The
target object is the object that includes the advice methods. A proxy, the object
delegated by the method invocation, calls advisors behind the scenes.

Spring provides three types of advice in addition to the MethodInterceptor
inherited from the AOP Alliance: ThrowsAdvice, BeforeAdvice, and
AfterReturningAdvice. ThrowsAdvice allows us to implement an advice that
is called when the target method throws an exception. BeforeAdvice is used to
implement advice called before method execution. AfterReturningAdvice is used
to implement advice called after normal execution of the target method.

To create a pointcut, you must create instances of the Pointcut implementations.
These are NameMatchMethodPointcut, JdkRegexpMethodPointcut,
StaticMethodMatcherPointcut, DynamicMethodMatcherPointcut, which allow
you to select the target methods based on their names, Java regular expressions,
static information, or dynamic information at runtime, respectively. Additionally,
you can use Pointcuts.SETTERS and Pointcuts.GETTERS to select target methods,
which are setter and getters, respectively.

Spring's advisors are implementations of the Advisor interface. The most common
implementation is DefaultPointcutAdvisor, which can be used with any Spring
advice type and the AOP Alliance's MethodInterceptor.

You must create a proxy object to delegate method invocation and call any advice,
advisor, or interceptor behind the scenes. Proxy objects are not created on their own,
but are created by proxy factory objects. Spring provides a range of different proxy
factory classes: ProxyFactory, ProxyFactoryBean, AbstractAutoProxyCreator,
and TransactionProxyFactoryBean, which are used, respectively, to create a proxy
object programmatically, to create one declaratively, to automate proxy creation, and
to create a transactional proxy.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 11

[315]

Spring 2.0 comes with full support for AspectJ integration. Spring 2.0 provides a
proprietary XML schema to configure and wire AOP components together. The
main features of Spring 2.0 for AOP implementation are easier XML configuration
and support for comprehensive advice. To use Spring 2.0 AOP, you must declare the
Spring AOP schema with its location. You can then use <aop:config> as the root
element for AOP configuration, <aop:aspect> to define an aspect, <aop:pointcut>
to declare a pointcut, and <aop:before>, <aop:after>, <aop:after-returning>,
<aop:after-throwing>, and <aop:around> to define types of advice.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management
Enterprise applications let users insert new data or manipulate existing data. In most
situations, this data is crucial, so the application must perform data manipulation
reliably. This reliability is guaranteed through transactions, the subject of this chapter.

A transaction is defined as a unit of work, a sequence of operations that must be
completed all together, that must be performed reliably. Although this is not a
comprehensive definition of a transaction, it's sufficient to give us an idea of what
transactions aim to provide.

Databases are the main context in which transactions are discussed. In a database, a
transaction implies the reliable performance of a unit of persistence operations. As
applications interact with databases, these interactions involve transactions, as well.
Applications do not need to implement transactions themselves. Instead, they rely on
transaction services exposed by the underlying database or by the application server.
This means the application's job is managing transactions, not implementing them.
Transaction management includes two activities:

Configuring transactions: How are persistence operations grouped as
transactions? How are they isolated from each other?
Determining application reactions: What is the application's response when
a transaction's execution succeeds or fails?

Java, and other enterprise languages, provide APIs to configure transactions and
determine how the application reacts to them. This is the role of a language in
managing transactions.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[318]

This chapter explains concepts related to transactions and how transactions are
managed in native and Spring-based Hibernate applications. It also discusses
transactional and non-transactional caching as two level caching supported by
Hibernate. In particular, the chapter covers these topics:

Transaction essentials
The Hibernate Transaction API
The Spring Transaction Abstraction API
Caching

Transaction essentials
Put simply, a transaction is a set of operations that must be considered as a single
unit of work. All of the operations must be completed successfully, or none must be
carried out. If, for any reason, one or more operations fail, any successful operations
in the transaction (or their effects) must be undone.

If the unit of work includes one operation, a transaction for that unit means either
that the operation must be completed successfully, or that no persistent state must
ever be affected. Additionally, that operation must be performed in isolation from
other operations associated with other transactions and executed concurrently.
The same statements are true for a unit of work with multiple operations. All of
the transaction's operations must be performed successfully, or all must be failed
together as if nothing ever happened. The operations associated with one transaction
must be isolated from concurrent operations associated with another transaction.

A common example of a transaction is transferring money from one account to
another. As debiting the first account and crediting the second must be considered a
single job, we expect these actions to be done as parts of a single transaction. In other
words, if one operation fails, we expect that the other operation will also fail or will
be undone. Otherwise, the transfer is not balanced.

Each transaction starts from an initial state. The initial state is the data's state before
any changes are applied during the transaction. All other transactions that work
with this data see the data as it is in this state. The transaction is executed, and the
data may change. When all changes are successfully completed, the transaction is
committed, meaning all changes are applied and the transaction moves to a stable
state. If a change is not successfully completed, the transaction is rolled back, meaning
that all changes are undone and the transaction moves to the initial state from which
it started. The following figure shows this process for our example transaction:

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[319]

begin

Initial State
Debit Credit

roll back

commit Transaction
Completed

Debit Credit

Undone Undone Initial State

Transactions are often described using a set of properties called ACID, which
stands for Atomicity, Consistency, Isolation, and Durability. The ACID properties,
described in the following list, are the rules that transactions must obey:

Atomicity: Each transaction is done as a unit of work. If one step of the unit
fails, other steps must not be carried out, or must be undone.
Consistency: Each transaction must obey the rules of the affected resource
and move it to a consistent state.
Isolation: Each transaction must operate in isolation from other, concurrent
transactions. If two transactions are executed concurrently, one cannot affect
the other's results before each transaction is committed. For instance, in the
educational system application, each course is associated with only a single
teacher. When a course is assigned to a teacher in a transaction, another
transaction cannot assign the same course to another teacher while the first
transaction is not committed. The isolation aspect of transactions guarantees
that any transaction data cannot be changed by another transaction while it is
being processed.
Durability: Each transaction result must be maintained until another
transaction is performed against the result.

Of these properties, only atomicity and isolation are configurable properties that
affect application code. Consistency and durability (permanent, fixed properties that
are not configurable) are provided and managed by databases.

Managing transactions in Java
Java applications offer a range of different APIs for managing transactions. Based
on your application type or your application requirements, you may prefer (or be
forced) to use a particular API. Transaction APIs can be summarized as follows:

JDBC Transaction API: This is the core Java API for managing transactions
that are associated with a single database. This API is exposed through
the java.sql.Connection interface, which provides setAutoCommit(),
commit(), and rollback() methods to manage transactions.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[320]

Java Transaction API (JTA): This is the Java EE standard API for managing
transactions, particularly in distributed environments such as application
servers. This API, which is exposed through the javax.transaction.
UserTransaction interface, is useful in situations where application
involves multiple transactional resources.
Hibernate Transaction API: This is a Hibernate-specific API and JPA
Transaction API for transaction management in Hibernate applications.
These APIs, which are respectively exposed through the org.hibernate.
Transaction and javax.persistence.EntityTransaction interfaces,
transmit transaction calls to associated java.sql.Connection instances.
Spring Transaction Abstraction API: Part of the Spring API, this is for
abstracting the application from the underlying transaction API.

Local versus global transactions
Transactions come in two flavors: local and global. Local transactions involve only
a single transactional resource (for example, a single database). There may be many
transactional resources, but if each resource has its own transactions isolated from
other resources' transactions, the transactions are local ones. The code to manage this
type of transactions is simple because all transaction implementation is located in a
single resource. In the case of a database, the application code simply uses the JDBC
API with commit() and rollback() methods to manage transactions.

In contrast, global transactions (also called distributed transactions) involve multiple
transactional resources (for example, multiple databases). To manage distributed
transactions, the application uses JTA to interact with a third entity, which is called
the transaction manager. A transaction manager is typically an application server,
such as IBM WebSphere or BEA WebLogic, and is responsible for coordinating
transactions among resources and providing a two-phase commit process. This
two-phase commit ensures that all involved resources commit their associated
transactions successfully or, if one transaction fails, all other transactions are rolled
back. JTA defines a standard API to interact with different transaction managers.
Distributed transactions are more difficult to manage, and, of course, they are
executed with overhead that decreases performance.

JTA can be used to manage local transactions, as well. However, JTA
needs a JTA provider (for example, Tomcat and any standard application
server) and always has overhead.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[321]

Transaction demarcation
When managing transactions, you need to mark where each transaction starts and
ends. This is called transaction demarcation, and there are two different approaches
to it: programmatic and declarative. Next, we'll discuss how these approaches are
implemented in Hibernate applications.

Programmatic transaction demarcation
Transactions can be demarcated programmatically. JTA or JDBC APIs can be used
directly in the application code to begin and commit or roll back transactions. With
JDBC, the setAutoCommit(false) method is called on the Connection object to
begin a transaction. The started transaction can be committed or rolled back via
commit() or rollback() on the Connection instance, respectively. In the case of
a global transaction, a UserTransaction object is obtained from the transaction
manager through looking up the manager. The UserTransaction instance is used
as a handler to signal the manager where the transaction starts, UserTransaction.
begin(), and where the transaction is committed, UserTransaction.commit(), or
rolled back, UserTransaction.rollback().

When the application uses Hibernate to interact with a single database, you obtain
an org.hibernate.Transaction object from the Session instance as a handler to
work with the underlying JDBC transaction API. Although it is still possible to use
the JDBC API directly in Hibernate applications, the applications should always rely
on the Hibernate API instead of binding to the JDBC API. Global transactions are
always managed in the same way, whether the application uses Hibernate or another
O/R framework.

Declarative transaction demarcation
The declarative approach makes it possible to mark transaction boundaries
declaratively through XML files or Java annotations instead of calling a particular
API, such as JDBC or JTA. There are actually two approaches to declarative
transaction demarcation: using EJB as a part of the Java EE specification, and using
Spring. Using EJB is outside of this book's scope. However, at the end of this chapter,
we'll take a look at Spring and how it manages transactions.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[322]

Transaction attributes
Transactions can be configured with various attributes to provide more control of
transaction execution. These attributes include the following:

Isolation level: This is the first and most significant transaction attribute.
Although the underlying database uses a particular isolation level by default,
you may decide which isolation level suits your application's needs. The
following table shows the isolation levels that are supported by JDBC and
most databases. All isolation levels are defined as static members of the
java.sql.Connection interface.
Propagation behavior: This describes how one or more transactions
participate in a bigger transaction and affect its result. The table, shown
after isolation level table, lists the different propagation behaviors.
Timeout: This specifies how long a transaction is permitted to run. If
the execution time for that transaction exceeds the specified timeout, the
transaction must be canceled and rolled back.
Read-only: This specifies whether the transaction is allowed to modify the
resource data. Setting this attribute to true allows the transaction provider
(for example, Hibernate) to provide some optimizations.

Here are the isolation levels and their equivalent values:

Isolation Level Equivalent Value
TRANSACTION_NONE 0
TRANSACTION_READ_UNCOMMITTED 1
TRANSACTION_READ_COMMITTED 2
TRANSACTION_REPEATABLE_READ 4
TRANSACTION_SERIALIZABLE 8

And the following table shows different propagation behaviors:

Propagation Value Description
PROPAGATION_REQUIRED The method participates in the current transaction.

If no transaction exists, a new one is created.
PROPAGATION_SUPPORTS The method participates in the current transaction.

If no transaction exists, the method executes without
a transaction.

PROPAGATION_MANDATORY The method participates in the current transaction.
If no transaction exists, an exception is thrown.

PROPAGATION_REQUIRES_NEW The method executes in a new transaction. If a
transaction exists, the transaction will be suspended.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[323]

Propagation Value Description
PROPAGATION_NOT_SUPPORTED The method executes without a transaction. If a

transaction exists, the transaction will be suspended.
PROPAGATION_NEVER The method executes without a transaction. If a

transaction exists, an exception is thrown.
PROPAGATION_NESTED The method executes within a nested transaction if a

current transaction exists. Otherwise, it behaves like
PROPAGATION_REQUIRED.

Now that you've seen some background material for transactions, it's time to
look at transaction implementation details, both in native and in Spring-based
Hibernate applications.

Transactions in Hibernate applications
With JDBC, java.sql.Connection objects are always used to interact with the
database, perform persistent operations, and manage transactions. With Hibernate,
org.hibernate.Session objects are used to interact with the database. In turn, the
Session objects use the Connection objects.

Each Session object uses an individual Connection object behind the scenes to
perform persistent operations and manage transactions. The following snippet
shows a typical procedure for transaction management with Hibernate:

Session session = HibernateHelper.getSession();
Transaction tx = null;
try {
 tx = session.beginTransaction();

 // Unit of work inside the transaction
 tx.commit();

 tx = null;
} catch (Exception e) {
 if (tx != null)
 try {
 tx.rollback();

 } catch (HibernateException innerEx) {
 logger.log("Couldn't roll back transaction", innerEx);
 }
} finally {
 session.close();
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[324]

Let's go through the code and see what each line does:

Session session = HibernateHelper.getSession(): A Session instance
is obtained from the SessionFactory. Obtaining a Session object notionally
means fetching a Connection object from the connection pool. However, the
Session object does not fetch a Connection from the pool until the Session
transaction starts by invoking Session.beginTransaction().
Transaction tx = session.beginTransaction(): The
beginTransaction() method of Session marks the starting point of the
transaction. This method returns an org.hibernate.Transaction instance
as a handler to commit or roll back the transaction at the end. By calling the
beginTransaction() method, the Session is bound to a fresh Connection
object from the connection pool, the setAutoCommit(false) method on the
associated Connection object is called, and the transaction starts.
Performing persistent operations: The Session object is used to perform
persistent operations that must be done as a unit of work inside a transaction.
tx.commit(): This is the transaction's end point, where you decide whether
to commit all changes to the database. If everything goes well, the transaction
is committed. This flushes the Session instance, synchronizes it with the
database, and releases the Connection object to which the Session is bound.
tx=null: The Transaction instance is thrown away. Assigning null to
the Transaction instance allows us to check in the catch block whether
the transaction successfully committed. (tx=null is invoked when the
tx.commit()executes without an exception.)
catch block: The only operation in the catch block is rolling back the
transaction if it has not committed successfully.
session.close(): You need to clean up the Session instance and release
its resources.

Many Session and Transaction methods throw a
HibernateException. However, because HibernateException is
an unchecked exception, you don't need to catch it if you don't want to.
Often, we should worry about commit fulfillment, as we have done here,
so we catch exceptions only for rolling back the transaction.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[325]

Using JTA in Hibernate applications
In rare situations, an application uses more than one database. One valid use case
for this situation is when your data is not in one database, and is scattered among
many databases. In such situations, the JDBC API, which Hibernate uses internally
to manage transactions, is not sufficient. In this case, you must use JTA to manage
transactions. However, JTA is available only in managed environments (for example,
a Java EE application server, such as IBM WebSphere (http://www.ibm.com/
websphere), or a stand-alone JTA provider, such as ObjectWeb JOTM
(http://jotm.objectweb.org)).

To use JTA, Hibernate should be configured as follows:

In the Hibernate configuration file, set the hibernate.transaction.
factory_class property to org.hibernate.transaction.
JTATransactionFactory. (The default value for the hibernate.
transaction.factory_class property is org.hibernate.transaction.
JDBCTransactionFactory, meaning that Hibernate uses the JDBC
transaction API by default.)
Set hibernate.transaction.manager_lookup_class to an appropriate
TransactionManagerLookup implementation corresponding to the managed
environment that provides transactions. (For instance, use org.hibernate.
transaction.WebSphereTransactionManagerLookup when you are using
IBM WebSphere as the managed environment.)
Configure Hibernate with the right values for hibernate.jndi.url and
hibernate.jndi.<JNDIpropertyname> to use managed connections from
the container. (Refer to Chapter 4 for more information.)
Obtain a javax.transaction.UserTransaction object by looking up an
environment JNDI node, and use the obtained object to commit or roll back
the transaction.

The following code shows how to use JTA to perform persistent operations with
two databases:

UserTransaction utx =
 (UserTransaction) new InitialContext().lookup("java:comp/env/tx");
Session session1 = null;
Session session2 = null;
try {
 utx.begin();
 session1 = HibernateHelper.getSession1();
 session2 = HibernateHelper.getSession2();
 // interacting with server
 // Unit of work inside the transaction

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[326]

 utx.commit();
} catch (RuntimeException ex) {
 try {
 utx.rollback();
 throw ex;
 } catch (SystemException sysEx) {
 logger.log("Couldn't roll back transaction", sysEx);
 }
}

As you can see, a UserTransaction object is obtained through looking up the
container. The begin() method is called on the obtained UserTransaction to start
the transaction. After all of the work has been done, the commit() method is invoked
on the UserTransaction object to commit the transaction. Any exception during the
databases' interaction caught in the catch block rolls back the transaction.

Spring transaction abstraction
So far, you have learned how to manage Hibernate transactions through JDBC
(when Hibernate uses a single database) and through JTA (when Hibernate
interacts with multiple databases). Spring can simplify transaction management
in Hibernate applications by providing a transaction infrastructure to abstract the
application code from the underlying transaction strategy. Using Spring, transaction
management code that's bound to a specific API, such as JDBC or JTA, is omitted
from the application. With Spring, you can manage transactions programmatically
or declaratively. However, the declarative approach has certain advantages and is
always preferred.

Transaction management with Spring is powerful and flexible because Spring
provides a rich set of options for a range of different environments. With Spring,
you can easily switch to a different transaction strategy without making significant
changes to the application code.

How Spring manages transactions
In the previous chapter, we established that transactions are cross-cutting concerns.
Transaction management is logic that is scattered over the entire application.
With Spring, we can implement transaction management code as advice applied
to particular classes of the application. The following figure shows the individual
participants in Spring's transaction management:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[327]

Transactional
Object

Calling
Object call

Transaction
Proxy

Transaction
Interceptor

Transaction
Manager DataSource

Only the gray objects in the figure above are used in the application code.
The white objects are wholly configured, instantiated, and managed by
the Spring container.

The following table describes the role of each object in the above figure:

Object Role
Data source This object represents the java.sql.Connection factory. It is

configured as a bean of type javax.sql.DataSource.
Transaction
manager

This object abstracts the application code from the
underlying transaction API. There is an individual
implementation of org.springframework.transaction.
PlatformTransactionManager for each persistence technology
supported by Spring.

Transaction
interceptor

This is an around advice that binds methods to transactions.

Transactional
object

This is the object that is bound to the transaction interceptor.

Transaction
proxy

This is an intermediate object, residing between the calling object and
the transactional object. It is responsible for applying the transaction
interceptor.

Calling object This is the object that calls the transactional object. Actually, the calling
object interacts with a transaction proxy to call the transactional object.

Let's go through this list and see how each object is configured.

The choice of transaction manager
Spring provides a distinct transaction manager for each persistence technology that it
supports. The transaction manager abstracts the details of the underlying transaction
management API. The following table shows the different transaction managers
that Spring provides. Each transaction manager is an implementation of
org.springframework.transaction.PlatformTransactionManager:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[328]

Transaction Manager Class Persistence Technology
org.springframework.jdbc.datasource.
DataSourceTransactionManager

This manages pure JDBC transactions
associated directly with java.sql.
Connection.

org.springframework.orm.hibernate.
HibernateTransactionManager

This manages transactions associated
with Hibernate 2's Sessions.

org.springframework.orm.hibernate3.
HibernateTransactionManager

This manages transactions associated
with Hibernate 3's Sessions.

org.springframework.orm.jpa.
JpaTransactionManager

This manages transactions associated
with JPA's javax.persistence.
EntityManager objects.

org.springframework.orm.jdo.
JdoTransactionManager

This manages transactions
associated with JDO's javax.jdo.
PersistenceManager objects.

org.springframework.orm.toplink.
TopLinkTransactionManager

This manages transactions associated
with TopLink's Sessions.

org.springframework.jta.
JtaTransactionManager

This manages transactions associated
with JTA's javax.transaction.
UserTransaction objects.

To use the Spring transaction API, you must use a transaction manager that's
appropriate to the persistence technology your application uses. Additionally, you
must use an appropriate connection factory, creating connection objects of the
target persistence technology. The following table shows the factory classes
provided by Spring:

Factory Class Persistence Technology
org.springframework.orm.hibernate.
LocalSessionFactoryBean

This is a factory for Hibernate 2's
Sessions.

org.springframework.orm.hibernate3.
LocalSessionFactoryBean

This is a factory for Hibernate 3's
Sessions.

org.springframework.orm.toplink.
LocalSessionFactoryBean

This is a factory for TopLink's
Sessions.

org.springframework.orm.jpa.
LocalEntityManagerFactoryBean

This is a factory for JPA's
EntityManager.

org.springframework.orm.jdo.
LocalPersistenceManagerFactoryBean

This is a factory for JDO's
PersistenceManager.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[329]

Using the Hibernate transaction manager
Setting up the transaction manger for a Hibernate application includes declaring
factory and transaction manager objects in the Spring context, and then wiring them
together, as shown here:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName">
 <value>org.hsqldb.jdbcDriver</value>
 </property>
 <property name="url">
 <value>jdbc:hsqldb:hsql://localhost/hiberdb</value>
 </property>
 <property name="username">
 <value>sa</value>
 </property>
 <property name="password">
 <value></value>
 </property>
</bean>
<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.
LocalSessionFactoryBean">
 <property name="mappingResources">
 <list>
 <value>com/packtpub/springhibernate/ch12/Student.hbm.xml</value>
 <value>com/packtpub/springhibernate/ch12/Teacher.hbm.xml</value>
 <!-- Other hbm files -->
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.transaction.factory_class">
 org.hibernate.transaction.JDBCTransactionFactory
 </prop>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </prop>
 </props>
 </property>
 <property name="dataSource">
 <ref local="dataSource"/>
 </property>
</bean>
<bean id="transactionManager"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[330]

 class="org.springframework.orm.hibernate3.
HibernateTransactionManager">
 <property name="sessionFactory">
 <ref local="sessionFactory"/>
 </property>
</bean>

As you can see, the configuration file includes three bean definitions: one for the
data source, one for the factory object, and one for the transaction manager object.
The SessionFactory object is configured with three properties: mappingResources,
hibernateProperties, and dataSource, which specify the Hibernate mapping
paths, the Hibernate configurable properties, and the data source that creates JDBC
Connections, respectively. The TransactionManager is configured with only one
property: sessionFactory.

Using the JTA transaction manager
You can use the JTA transaction manager in a Hibernate application when the
application works with multiple databases. The configuration for using the JTA
transaction manager is very similar to using a normal Hibernate transaction
manager, as recently discussed. The difference is using JtaTransactionManager,
instead of HibernateTransactionManager, and configuring it without a
sessionFactory property. The following code shows how to use the JTA
transaction manager:

<bean id="dataSource" class="org.springframework.jndi.
JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/jdbc/MyDB</value>
 </property>
</bean>

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.
LocalSessionFactoryBean">
 <property name="mappingResources">
 <list>
 <value>com/packtpub/springhibernate/ch12/Student.hbm.xml</value>
 <value>com/packtpub/springhibernate/ch12/Teacher.hbm.xml</value>
 <!-- Other hbm files -->
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[331]

 org.hibernate.dialect.HSQLDialect
 </prop>
 </props>
 </property>
 <property name="dataSource">
 <ref local="dataSource"/>
 </property>
</bean>

<bean id="transactionManager"
 class="org.springframework.transaction.jta.
JtaTransactionManager">
</bean>

Spring transaction configuration
When you've configured the SessionFactory and the transaction manager, you
need to configure which methods to execute inside transactions. The configuration
is similar to what you have already learned in Chapter 11 about AOP configuration.
Similarly, you may use the classic bean definitions introduced by Spring 1.x, or the
schema-based transaction configuration introduced by Spring 2.x. Additionally,
Spring 2.x introduced an annotation-based transaction configuration.

Although using Spring 2.x's new features is always recommended,
you still have the option to use a classic bean configuration provided
by Spring 1.x when you are using Spring 2.x.

The only difference between Spring 1.x and Spring 2.x transaction configuration has
to do with interceptor and proxy configuration. In the following subsections, we'll
look at both classic and schema-based interceptor and proxy configurations.

Transaction configuration in Spring 1.x
The transaction interceptor is configured as an instance of org.
springframework.transaction.interceptor.TransactionInterceptor.
The TransactionInterceptor is an around advice, implementing the
MethodInterceptor interface. TransactionInterceptor begins a transaction
before target method execution, and commits the transaction after the
method executes normally, without throwing an unchecked exception.
TransactionInterceptor rolls back the transaction if an unchecked
exception is thrown. Here's an example of interceptor configuration:

<bean id="transactionInterceptor"
 class="org.springframework.transaction.interceptor.
TransactionInterceptor">

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[332]

 <property name="transactionManager" ref="transactionManager"/>
 <property name="transactionAttributes">
 <props>
 <prop key="*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

TransactionInterceptor is configured with two properties: transactionManager
and transactionAttributes. The transactionManager refers to the configured
transaction manager inside the Spring context. transactionAttributes lets you
select target methods based on their names, and define transaction attributes, such
as propagation behavior. In this example, this attribute uses * to indicate that all of
the target methods must be executed inside transactions. We could specify another
pattern, such as save*, which means only methods whose names start with the word
save are executed inside a transaction. PROPAGATION_REQUIRED, as you have already
seen, specifies how multiple transactions interact with each other.

The TransactionInterceptor instance starts a transaction before the target
method is invoked, and commits the transaction after the target method returns
normally. If the target method throws an unchecked exception (thereby returning
abnormally), TransactionInterceptor rolls back the transaction. However, if
TransactionInterceptor encounters a checked exception, it ignores the exception
and commits the transaction. You can also configure rollback conditions for the
interceptor. For this purpose, append a comma-separated list of exception types,
which must make transactions roll back to the transaction's propagation behavior.
For example, transactionInterceptor can be configured as follows to indicate that
throwing any type of exception rolls back a transaction:

<bean id="transactionInterceptor"
 class="org.springframework.transaction.interceptor.
TransactionInterceptor">
 <property name="transactionManager" ref="transactionManager"/>
 <property name="transactionAttributes">
 <props>
 <prop key="*">PROPAGATION_REQUIRED, -Throwable</prop>
 </props>
 </property>
</bean>

Each exception type must have a minus (-) symbol as
a prefix.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[333]

Proxy configuration
The proxy is another object that should be configured. This object intercepts calls
to the target methods, and applies the configured transaction interceptor to the
target methods. As you have already seen, Spring provides the general org.
springframework.aop.framework.ProxyFactoryBean class as a proxy object
to be configured inside the Spring context. The following code shows how this
class can be used:

<bean id="transactionalStudentDao"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target">
 <ref local="studentDao"/>
 </property>
 <property name="interceptorNames">
 <list>
 <idref bean="transactionInterceptor"/>
 </list>
 </property>
</bean>

As you can see, the transaction proxy is configured with two properties: target and
interceptorNames. The target property refers to the target object, the method that
must be executed inside a transaction. The interceptorNames property specifies a
list of interceptors, including the transactionInterceptor, which must be applied
to target method invocations.

Remember to use the proxy, rather than the actual target object, in your other bean
definitions that use the DAO bean.

Autoproxy creation
Spring provides an autoproxy approach to proxy advice and interceptors
automatically, making XML configuration less verbose. Using this approach,
you can declare an org.springframework.aop.framework.autoproxy.
BeanNameAutoProxyCreator bean, which wraps all of the target objects and
interceptors. When the target objects are invoked, it applies all of the interceptors to
the target objects. The following snippet shows how this approach can be used for
our example:

<bean class="org.springframework.aop.framework.autoproxy.
BeanNameAutoProxyCreator">
 <property name="beanNames">
 <list>
 <idref bean="studentDao"/>
 </list>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[334]

 </property>
 <property name="interceptorNames">
 <list>
 <idref bean="transactionInterceptor"/>
 </list>
 </property>
</bean>

As you can see, the BeanNameAutoProxyCreator bean is configured with two
properties: beanNames and interceptorNames. The beanNames specifies a list of
transactional target objects, the objects that must be executed inside transactions.
interceptorNames specifies the advice, including the transaction advice, applied
to the target objects. This time, you can use the original studentDao bean in your
other beans.

TransactionProxyFactoryBean
Using TransactionProxyFactoryBean is the easiest way to wrap a target object into
a transaction proxy. It allows us to omit the TransactionInterceptor definition
from the XML configuration and define a new bean, which wraps the target,
interceptors, and transactionAttributes. The following code shows our
example, which now is configured with TransactionProxyFactoryBean:

<bean id="transactionalStudentDao"
 class="org.springframework.transaction.interceptor.
TransactionProxyFactoryBean">
 <property name="transactionManager">
 <ref bean="transactionManager"/>
 </property>
 <property name="target">
 <ref local="studentDao"/>
 </property>
 <property name="transactionAttributes">
 <props>
 <prop key="save*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

To use TransactionProxyFactoryBean, you should configure each transactional
object as a separate bean. In this case, you must use this in place of the original
studentDao bean.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[335]

It's also possible to define the target object in the TransactionProxyFactoryBean
definition, so there's no need for another bean:

<bean id="transactionalStudentDao"
 class="org.springframework.transaction.interceptor.
TransactionProxyFactoryBean">
 <property name="transactionManager">
 <ref bean="transactionManager"/>
 </property>
 <property name="target">

 <bean class="com.packtpub.springhibernate.ch12.StudentDaoImpl">

 <property name="sessionFactory">

 <ref local="sessionFactory"/>

 </property>

 </bean>

 </property>

 <property name="transactionAttributes">
 <props>
 <prop key="save*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

Transaction configuration in Spring 2.x
To use the convenient configuration features provided in Spring 2.x, you need to
import the transaction schema to the Spring context as follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tx="http://www.springframework.org/schema/tx"

 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/tx

 http://www.springframework.org/schema/tx/spring-tx.xsd">

 <!--transaction configuration here-->
</beans>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[336]

The specific elements which can come for transaction configuration in the spring
context are as follows:

spring-tx.xsd: This defines custom elements to make transaction
configuration more convenient. The custom elements used for transaction
configuration are as follows:

<tx:annotation-driven>: This configures the transaction
manager with target classes, which are annotated with the
Spring @Transactional annotation. (This relies on the Java
annotation API, so it's not discussed in this book.)
<tx:advice>: This element declares a transaction as an
advice to be applied to the target objects.
<tx:attributes>: This element configures a transaction
advice. The configuration attributes include the propagation
behavior, read-only flag, roll back for, and so on.
<tx:method>: This element specifies methods as target
transactional methods.

The following code shows our example, which now has been refactored to use
Spring 2.x's custom schema elements:

<bean id="dataSource" class="org.springframework.jndi.
JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/jdbc/MyDB</value>
 </property>
</bean>

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.
LocalSessionFactoryBean">
 <property name="mappingResources">
 <list>
 <value>com/packtpub/springhibernate/ch12/Student.hbm.xml</value>
 <value>com/packtpub/springhibernate/ch12/Teacher.hbm.xml</value>
 <value>com/packtpub/springhibernate/ch12/Course.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </prop>
 </props>

•

°

°

°

°

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[337]

 </property>
 <property name="dataSource">
 <ref local="dataSource"/>
 </property>
</bean>

<bean id="transactionManager"
 class="org.springframework.transaction.jta.
JtaTransactionManager">
</bean>

<!-- Transactional proxy -->
<tx:advice id="transactionInterceptor" transaction-manager=
"transactionManager">
 <tx:attributes>
 <tx:method name="*" rollback-for="Throwable"/>
 </tx:attributes>
</tx:advice>

<aop:config>
 <aop:advisor
 pointcut=" execution(* com.packtpub.springhibernate.
ch12.*Service.*(..))"
 advice-ref="transactionInterceptor"/>
</aop:config>

As you can see, only the transactionInterceptor and target declarations have
changed. transactionInterceptor is defined as an advice. This advice is applied
to all methods (*) of the target object. The <aop:advisor> element defines the target
methods to which the declared advice is applied. This element uses a pointcut
attribute to select target methods.

Another topic that may involve reliable data manipulation is caching. Caching, of
course, is managed by Hibernate, so it always provides reliable data. However, this
is a good place to look at Hibernate's caching mechanism, and see how it improves
performance and provides reliable data.

Caching
Interacting with a database is an expensive operation. This is due to the fact that any
database interaction consists of sending a query request over the network, compiling
the query on the database server, executing the query, producing the result, and
finally sending the result back to the client.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[338]

Databases use different strategies to optimize performance. One of these strategies is
caching the data for a period of time. Caching prevents unnecessary query compiling
and disk I/O. Although the database-side caching strategy can be very effective
(because it does not consider network traffic), this strategy has limited value when
there are a large number of requests.

A typical strategy in this situation is an application-side cache mechanism. Instead
of using the database to cache data, the application caches the data. When direct
JDBC is used, the application is responsible for providing and managing the caching.
However, Hibernate provides a rich, easy-to-use cache mechanism on two levels.
Although the first-level cache is mandatory for all interactions (meaning that all
database requests must pass through this level), the second-level cache is optional
and configurable.

The first-level cache, provided by the Session object, holds the repetitive requested
objects in memory and prevents Hibernate from loading an object multiple times.
This cache can be discarded for an individual object by invoking the evict()
method of the session object:

public void evict(Object o) throws HibernateException

o is an object that you want to remove from the cache.

You can also use the clear() method to disable this cache for all objects:

public void clear()

The second-level cache is an external cache provided as a third-party project and
plugged into Hibernate. The Session object accesses this cache transparently. Last
figure in Chapter 3 shows the relationship of two caches with the session object
inside Hibernate.

Hibernate lets us use any third-party cache implementation by providing the
org.hibernate.cache.CacheProvider interface as the handler for interacting with
that cache implementation. The implemented class should be specified through the
hibernate.cache.provider_class property in the configuration file. The following
table shows the cache providers which Hibernate currently supports. By default,
Hibernate uses Ehcache for JVM-level caching:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[339]

Cache Provider Class Type Cluster Safe Query
Cache
Supported

Hashtable
(not
intended for
production
use)

HashtableCache
Provider

memory no yes

Ehcache EhCacheProvider memory, disk yes yes
OSCache OSCacheProvider memory, disk yes yes
SwarmCache SwarmCacheProvider clustered (IP

multicast)
yes (clustered
invalidation)

no

JBoss
TreeCache

TreeCacheProvider clustered (IP
multicast),
transactional

yes (replication) yes (clock
sync req.)

All of the cache provider classes are in
the org.hibernate.cache package.

Hibernate lets you configure the type of access to the second-level cache. You do this
via an object of the org.hibernate.CacheMode class that is applied to a Session
object by invoking its setCacheMode() method:

public void setCacheMode(CacheMode cacheMode)

This tells Hibernate how to interact with the second-level cache. For example, you
can use CacheMode.IGNORE to tell Hibernate not to use the second-level cache in
this particular Session. Suppose you are storing a huge number of students in the
database. To reduce memory usage, you can disable the second-level cache by setting
the cache mode of Session to org.hibernate.CacheMode.IGNORE as follows:

List students = ...//prepared through the business layer
Session session = HibernateHelper.getSession();
Transaction tx = session.beginTransaction();
session.setCacheMode(CacheMode.IGNORE);

for (int i = 0; i < students.size(); i++) {
 session.save(students.get(i));
 if (i % 20 == 0) {
 session.flush();
 session.clear();
 }
}
tx.commit();
session.close();

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Transaction Management

[340]

In this example, the first-level cache is flushed for every 20 objects stored.

The following table shows the cache modes that can be applied to Session
objects. Notice that all of these modes have been defined as static members in
the CacheMode class:

Cache Mode Description
IGNORE This mode specifies that items are never read from, or written to the

second-level cache.
REFRESH This mode indicates that items are written to the second-level cache,

but are not read from it. This mode bypasses the effect of hibernate.
cache.use_minimal_puts, forcing a refresh of the second-level cache
for all items read from the database.

PUT The second-level cache is only applied to put (write) requests, but
Hibernate won't read from the second-level cache.

GET The second-level cache is only applied to get (read) requests, but
Hibernate won't write to the second-level cache, except when
updating data.

NORMAL This is the normal behavior, reading items from and writing items to the
second-level cache.

Summary
In this chapter, we discussed the fundamental concepts behind transactions and
caching, and how they are implemented in Hibernate.

Conceptually, a transaction is a group of operations that must be done reliably
against a database or any other resource. Every transaction is specified by its so-
called ACID properties: Atomicity, Consistency, Isolation, and Durability. Of these
properties, only atomicity and isolation are of concern to the application developer.
The other two are implemented internally by the transactional resource.

Hibernate allows you to configure transaction isolation through the configuration
file. This is done through the hibernate.connection.isolation entry in the
configuration file with a value defined as a static member of the java.sql.
Connection interface.

Regarding atomicity, you need to obtain a Transaction object before any operation
by invoking the beginTransaction() method of Session. You can decide to
commit or roll back the transaction by calling either the commit() or the
rollback() method.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 12

[341]

Transactions also have other configurable characteristics, called transaction
attributes. These include transaction timeout, transaction propagation, and
read-only flag.

Spring provides a transaction API to abstract the application code from the specific
transaction API exposed by different persistence technologies. Moreover, Spring lets
you apply transactions as advice to the target transactional objects. To use the Spring
transaction API, you must configure a transaction manager, a transaction interceptor,
and target transactional objects. The transaction manager is the object that delegates
transaction invocation to the underlying transaction API. The transaction interceptor
is an around advice, applying transactions as advice to the target transactional
objects. To configure these objects, you may use classic bean configuration exposed
through Spring 1.x, or schema-based bean configuration provided by Spring 2.x.

Hibernate also provides caching in two levels to enhance persistence performance.
Although the first-level cache is provided by the session objects and cannot be
disabled, the second-level cache is served by third-party cache projects plugged into
Hibernate. The second-level cache is configurable and can be disabled. You can also
configure Hibernate to indicate how it should interact with the second-level cache.
This is done by the setCacheMode() method of Session, with a value defined as a
static member of the CacheMode class.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate
with Spring

As you've seen, Spring is a general-purpose framework that plays different roles in
many areas of application architecture. One of these areas is persistence. Spring does
not provide its own persistence framework. Instead, it provides an abstraction layer
over JDBC, and a variety of O/R mapping frameworks, such as iBATIS SQL Maps,
Hibernate, JDO, Apache OJB, and Oracle TopLink. This abstraction allows consistent,
manageable data-access implementation.

Spring's abstraction layer abstracts the application from the connection factory,
the transaction API, and the exception hierarchies used by the underlying
persistence technology. Application code always uses the Spring API to work with
connection factories, utilizes Spring strategies for transaction management, and
involves Spring's generic exception hierarchy to handle underlying exceptions.
Spring sits between the application classes and the O/R mapping tool, undertakes
transactions, and manages connection objects. It translates the underlying persistence
exceptions thrown by Hibernate to meaningful, unchecked exceptions of type
DataAccessException. Moreover, Spring provides IoC and AOP, which can
be used in the persistence layer.

In the previous chapter, you learned about transaction management
strategies for a Hibernate application. You also learned how Spring undertakes
Hibernate's transactions and provides a more powerful, comprehensive approach
to transaction management.

This chapter discusses how Spring affects the application's data-access layer. Our
discussion starts with the Data Access Object (DAO) pattern. This pattern, which
is popular in the Java world, allows for a more manageable, more maintainable
data-access tier. Then, we'll discuss how Spring affects application DAO classes
when integrated with Hibernate.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[344]

The Data Access Object pattern
Although you can obtain a Session object and connect to Hibernate anywhere in
the application, it's recommended that all interactions with Hibernate be done only
through distinct classes. Regarding this, there is a JEE design pattern, called the
DAO pattern. According to the DAO pattern, all persistent operations should be
performed via specific classes, technically called DAO classes. These classes are used
exclusively for communicating with the data tier. The purpose of this pattern is to
separate persistence-related code from the application's business logic, which makes
for more manageable and maintainable code, letting you change the persistence
strategy flexibly, without changing the business rules or workflow logic.

The DAO pattern states that we should define a DAO interface corresponding to
each DAO class. This DAO interface outlines the structure of a DAO class, defines
all of the persistence operations that the business layer needs, and (in Spring-based
applications) allows us to apply IoC to decouple the business layer from the
DAO class.

Service Facade Pattern
In implementation of data access tier, the Service Facade Pattern is always used in
addition to the DAO pattern. This pattern indicates using an intermediate object,
called service object, between all business tier objects and DAO objects. The service
object assembles the DAO methods to be managed as a unit of work. Note that only
one service class is created for all DAOs that are implemented in each use case.

The service class uses instances of DAO interfaces to interact with them. These
instances are instantiated from the concrete DAO classes by the IoC container
at runtime. Therefore, the service object is unaware of the actual DAO
implementation details.

Regardless of the persistence strategy your application uses (even if it
uses direct JDBC), applying the DAO and Service Facade patterns to
decouple application tiers is highly recommended.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[345]

Data tier implementation with Hibernate
Let's now see how the discussed patterns are applied to the application that directly
uses Hibernate. The following code shows a sample DAO interface:

package com.packtpub.springhibernate.ch13;

import java.util.Collection;

public interface StudentDao {
 public Student getStudent(long id);

 public Collection getAllStudents();

 public Collection getGraduatedStudents();

 public Collection findStudents(String lastName);

 public void saveStudent(Student std);

 public void removeStudent(Student std);
}

The following code shows a DAO class that implements this DAO interface:

package com.packtpub.springhibernate.ch13;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.HibernateException;
import org.hibernate.Query;

import java.util.Collection;

public class HibernateStudentDao implements StudentDao {

 SessionFactory sessionFactory;

 public Student getStudent(long id) {
 Student student = null;
 Session session = HibernateHelper.getSession();
 Transaction tx = null;
 try {
 tx = session.beginTransaction();
 student = (Student) session.get(Student.class, new Long(id));
 tx.commit();
 tx = null;
 } catch (HibernateException e) {
 if (tx != null)
 tx.rollback();
 throw e;
 } finally {

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[346]

 session.close();
 }
 return student;
 }

 public Collection getAllStudents(){
 Collection allStudents = null;
 Session session = HibernateHelper.getSession();
 Transaction tx = null;
 try {
 tx = session.beginTransaction();
 Query query = session.createQuery(
 "from Student std order by std.lastName, std.firstName");
 allStudents = query.list();
 tx.commit();
 tx = null;
 } catch (HibernateException e) {
 if (tx != null)
 tx.rollback();
 throw e; } finally {
 session.close();
 }
 return allStudents;
 }

 public Collection getGraduatedStudents(){
 Collection graduatedStudents = null;
 Session session = HibernateHelper.getSession();
 Transaction tx = null;
 try {
 tx = session.beginTransaction();
 Query query = session.createQuery(
 "from Student std where std.status=1");
 graduatedStudents = query.list();
 tx.commit();
 tx = null;
 } catch (HibernateException e) {
 if (tx != null)
 tx.rollback();
 throw e;
 } finally {
 session.close();
 }
 return graduatedStudents;
 }

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[347]

 public Collection findStudents(String lastName) {
 Collection students = null;
 Session session = HibernateHelper.getSession();
 Transaction tx = null;
 try {
 tx = session.beginTransaction();
 Query query = session.createQuery(
 "from Student std where std.lastName like ?");
 query.setString(1, lastName + "%");
 students = query.list();
 tx.commit();
 tx = null;
 } catch (HibernateException e) {
 if (tx != null)
 tx.rollback();
 throw e;
 } finally {
 session.close();
 }
 return students;
 }

 public void saveStudent(Student std) {
 Session session = HibernateHelper.getSession();
 Transaction tx = null;
 try {
 tx = session.beginTransaction();
 session.saveOrUpdate(std);
 tx.commit();
 tx = null;
 } catch (HibernateException e) {
 if (tx != null)
 tx.rollback();
 throw e;
 } finally {
 session.close();
 }
 }

 public void removeStudent(Student std) {
 Session session = HibernateHelper.getSession();
 Transaction tx = null;
 try {
 tx = session.beginTransaction();
 session.delete(std);

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[348]

 tx.commit();
 tx = null;
 } catch (HibernateException e) {
 if (tx != null)
 tx.rollback();
 throw e;
 } finally {
 session.close();
 }
 }

 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }
}

As you can see, all implemented methods do routines. All obtain a Session object
at first, get a Transaction object, perform a persistence operation, commit the
transaction, rollback the transaction if exception occurs, and finally close the Session
object. Each method contains much boilerplate code that is very similar to the
other methods.

Although applying the DAO pattern to the persistence code leads to more
manageable and maintainable code, the DAO classes still include much boilerplate
code. Each DAO method must obtain a Session instance, start a transaction, perform
the persistence operation, and commit the transaction. Additionally, each DAO
method should include its own duplicated exception-handling implementation.
These are exactly the problems that motivate us to use Spring with Hibernate.

Template Pattern
To clean the code and provide more manageable code, Spring utilizes
a pattern called Template Pattern. By this pattern, a template object
wraps all of the boilerplate repetitive code. Then, this object delegates the
persistence calls as a part of functionality in the template. In the Hibernate
case, HibernateTemplate extracts all of the boilerplate code, such as
obtaining a Session, performing transaction, and handing exceptions.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[349]

Data tier implementation with Spring
With Spring, you do not need to implement code for obtaining Session objects,
starting and committing transactions, and handling Hibernate exceptions. Instead,
you use a HibernateTemplate instance to delegate persistence calls to Hibernate,
without direct interaction with Hibernate.

Here are some benefits of using Spring in the persistence layer, instead of using
direct interaction with Hibernate:

With Spring, the HibernateTemplate object interacts with Hibernate. This
object removes the boilerplate code from DAO implementations.
Any invocation of one of HibernateTemplate's methods throws the
generic DataAccessException exception instead of HibernateException (a
Hibernate-specific exception).
Spring lets us demarcate transactions declaratively, instead of implementing
duplicated transaction-management code.

The HibernateTemplate class uses a SessionFactory instance internally to obtain
Session objects for Hibernate interaction. Interestingly, you can configure the
SessionFactory object via the Spring IoC container to be instantiated and injected
into DAO objects.

The next sections discuss how HibernateTemplate is used in DAO classes, and how
it is configured with SessionFactory in the Spring IoC container. First, let's look at
the Spring exception hierarchy.

Spring exception translation
Spring provides its own exception hierarchy, which sits on the exception hierarchies
of the O/R mapping tools it supports. It catches any database exception or error
that might be thrown through JDBC, or the underlying O/R mapping tool, and
translates the caught exception to a corresponding exception in its own hierarchy.
The Spring exception hierarchy is defined as a subclass of org.springframework.
dao.DataAccessException. Spring catches any exception thrown in the underlying
persistence technology and wraps it in a DataAccessException instance. The
DataAccessException object is an unchecked exception, because it extends
RuntimeException and you do not need to catch it if you do not want to.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[350]

Refactoring DAO classes to use Spring
Spring provides distinct DAO base classes for the different data-access technologies
it supports. For instance, Spring provides HibernateDaoSupport for Hibernate,
SqlMapClientDaoSupport for iBATIS SQL Maps, and JdoDaoSupport for JDO.
These classes wrap the common properties and methods that are required in all
DAO implementation subclasses.

When you use Hibernate with Spring, the DAO classes extend the Spring
org.springframework.orm.hibernate3.support.HibernateDaoSupport
class. This class wraps an instance of org.springframework.orm.hibernate3.
HibernateTemplate, which in turn wraps an org.hibernate.SessionFactory
instance. As you will soon see in this chapter, extending the HibernateDaoSupport
class lets you configure all DAO implementations consistently as beans inside the
Spring IoC container. Their SessionFactory property is configured and set up via
the Spring context.

The following code shows a simple DAO interface for a Spring-based DAO
implementation:

package com.packtpub.springhibernate.ch13;

import java.util.Collection;

public interface StudentDao {
 public Student getStudent(long id);

 public Collection getAllStudents();

 public Collection getGraduatedStudents();

 public Collection findStudents(String lastName);

 public void saveStudent(Student std);

 public void removeStudent(Student std);
}

Here, StudentDao is the DAO interface, with the same structure as the interface
shown in the following code.

HibernateException is thrown for any failure when directly
interacting with Hibernate. When Spring is used, HibernateException
is caught by Spring and translated to DataAccessException for any
persistence failure. Both exceptions are unchecked, so you do not need to
catch them if you don't want to do.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[351]

The following code shows the DAO implementation for this DAO interface, which
now uses Spring to interact with Hibernate:

package com.packtpub.springhibernate.ch13;

import org.springframework.orm.hibernate3.support.HibernateDaoSupport;

import java.util.Collection;

public class HibernateStudentDao extends HibernateDaoSupport
implementsStudentDao {

 public Student getStudent(long id) {
 return (Student) getHibernateTemplate().get(Student.class, new
 Long(id));
 }

 public Collection getAllStudents(){
 return getHibernateTemplate().
 find("from Student std order by std.lastName, std.firstName");
 }

 public Collection getGraduatedStudents(){
 return getHibernateTemplate().find("from Student std where
 std.status=1");
 }

 public Collection findStudents(String lastName) {
 return getHibernateTemplate().
 find("from Student std where std.lastName like ?", lastName +
"%");
 }

 public void saveStudent(Student std) {
 getHibernateTemplate().saveOrUpdate(std);
 }

 public void removeStudent(Student std) {
 getHibernateTemplate().delete(std);
 }
}

Notice that the DAO class still implements the DAO interface, which outlines all of
the persistent operations implemented by the DAO class. As you can see, all of the
persistent methods in the DAO class use the getHibernateTemplate() method
to access the HibernateTemplate object. As you saw in the previous section,
HibernateTemplate is a Spring convenience class that delegates DAO calls to the
Hibernate Session API. This class exposes all of Hibernate's Session methods, as
well as a variety of other convenient methods that DAO classes may need. Because
HibernateTemplate convenient methods are not exposed by the Session interface,
you can use find() and findByCriteria() when you want to execute HQL
or create a Criteria object. Additionally, it wraps all of the underlying
exceptions thrown by the Session method with instances of the unchecked
org.springframework.dao.DataAccessException.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[352]

For convenience, I recommend using the HibernateDaoSupport class as the base
class for all Hibernate DAO implementations, but you can ignore this class and work
directly with a HibernateTemplate instance in DAO classes. To do so, define a
property of HibernateTemplate in the DAO class, which is initialized and set up
via the Spring IoC container.

The following code shows the DAO class, which now uses HibernateTemplate
directly. Note that this approach is not recommended because it gets you
involved with the HibernateTemplate object in both the DAO class and the
DAO configuration in the Spring context:

package com.packtpub.springhibernate.ch13;

import org.springframework.orm.hibernate3.HibernateTemplate;

import java.util.Collection;

public class HibernateStudentDao implements StudentDao {

 HibernateTemplate hibernateTemplate;

 public Student getStudent(long id) {
 return (Student) getHibernateTemplate().get(Student.class, new
Long(id));
 }

 public Collection getAllStudents(){
 return getHibernateTemplate().
 find("from Student std order by std.lastName, std.firstName");
 }

 public Collection getGraduatedStudents(){
 return getHibernateTemplate().find("from Student std where
std.status=1");
 }

 public Collection findStudents(String lastName) {
 return getHibernateTemplate().
 find("from Student std where std.lastName like "+ lastName +
"%");
 }

 public void saveStudent(Student std) {
 getHibernateTemplate().saveOrUpdate(std);
 }

 public void removeStudent(Student std) {
 getHibernateTemplate().delete(std);
 }

 public HibernateTemplate getHibernateTemplate() {
 return hibernateTemplate;
 }

 public void setHibernateTemplate(HibernateTemplate
hibernateTemplate) {
 this.hibernateTemplate = hibernateTemplate;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[353]

The DAO class now has the setHibernateTemplate() method to allow Spring to
inject the configured HibernateTemplate instance into the DAO object.

Moreover, the DAO class can abandon the HibernateTemplate class and use
the SessionFactory instance directly to interact with Hibernate. The following
code shows HibernateStudentDao, which now works directly with the
SessionFactory object:

package com.packtpub.springhibernate.ch13;

import org.hibernate.HibernateException;
import org.hibernate.Session;
import org.hibernate.Query;
import org.hibernate.SessionFactory;
import org.springframework.orm.hibernate3.SessionFactoryUtils;

import java.util.Collection;

public class HibernateStudentDao implements StudentDao {

 SessionFactory sessionFactory;

 public Student getStudent(long id) {
 Session session = SessionFactoryUtils.getSession(this.
sessionFactory,
true);
 try {
 return (Student) session.get(Student.class, new Long(id));
 } catch (HibernateException ex) {
 throw SessionFactoryUtils.convertHibernateAccessException(ex);
 } finally {
 SessionFactoryUtils.closeSession(session);
 }
 }

 public Collection getAllStudents(){
 Session session = SessionFactoryUtils.getSession(this.
sessionFactory,
true);
 try {

 Query query = session.createQuery(
 "from Student std order by std.lastName, std.
firstName");
 Collection allStudents = query.list();
 return allStudents;
 } catch (HibernateException ex) {
 throw SessionFactoryUtils.convertHibernateAccessException(ex);
 } finally {
 SessionFactoryUtils.closeSession(session);

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[354]

 }
 }

 public Collection getGraduatedStudents(){
 Session session = SessionFactoryUtils.getSession(this.
sessionFactory,
true);
 try {
 Query query = session.createQuery("from Student std where std.
status=1");
 Collection graduatedStudents = query.list();
 return graduatedStudents;
 } catch (HibernateException ex) {
 throw SessionFactoryUtils.convertHibernateAccessException(ex);
 } finally {
 SessionFactoryUtils.closeSession(session);
 }
 }

 public Collection findStudents(String lastName) {
 Session session = SessionFactoryUtils.getSession(this.
sessionFactory,
true);
 try {
 Query query = session.createQuery(
 "from Student std where std.lastName like ?");
 query.setString(1, lastName + "%");
 Collection students = query.list();
 return students;
 } catch (HibernateException ex) {
 throw SessionFactoryUtils.convertHibernateAccessException(ex);
 } finally {
 SessionFactoryUtils.closeSession(session);
 }
 }

 public void saveStudent(Student std) {
 Session session = SessionFactoryUtils.getSession(this.
sessionFactory,
true);
 try {
 session.save(std);
 } catch (HibernateException ex) {
 throw SessionFactoryUtils.convertHibernateAccessException(ex);
 } finally {
 SessionFactoryUtils.closeSession(session);
 }

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[355]

 }

 public void removeStudent(Student std) {
 Session session = SessionFactoryUtils.getSession(this.
sessionFactory,
true);
 try {
 session.delete(std);
 } catch (HibernateException ex) {
 throw SessionFactoryUtils.convertHibernateAccessException(ex);
 } finally {
 SessionFactoryUtils.closeSession(session);
 }
 }

 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }
}

In all of the methods above, the SessionFactoryUtils class is used to obtain a
Session object. The provided Session object is then used to perform the persistence
operation. SessionFactoryUtils is also used to translate HibernateException
to DataAccessException in the catch blocks and close the Session objects in
the final blocks. Note that this DAO implementation bypasses the advantages of
HibernateDaoSupport and HibernateTemplate. You must manage Hibernate's
Session manually (as well as exception translation and transaction management)
and implement much boilerplate code.

org.springframework.orm.hibernate3.SessionFactoryUtils
is a Spring helper class for obtaining Session, reusing Session within
transactions, and translating HibernateException to the generic
DataAccessException.

This way is absolutely not the way to work with Session in Spring. Always use
the HibernateTemplate class to work with Session objects behind the scenes.
However, in cases where you need to work directly with Session objects, you
can use an implementation of the org.springframework.orm.hibernate3.
HibernateCallback interface as the handler to work with Sessions.
The following code snippet shows how this approach is:

public void saveStudent(Student std) {
 HibernateCallback callback = new HibernateCallback() {
 public Object doInHibernate(Session session) throws
HibernateException,

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[356]

SQLException {
 return session.saveOrUpdate(std);
 }
 };
 getHibernateTemplate().execute(callback);

 }

In this code, an implicit implementation of HibernateCallback is created and its
only doInHibernate() method is implemented. The doInHibernate() method
takes an object of Session and returns the result of persistence operation, null if
none. The HibernateCallback object is then passed to the execute() method of
HibernateTemplate to be executed. The doInHibernate() method just provides a
handler to work directly with Session objects that are obtained and used behind
the scenes.

Configuring Hibernate in a Spring
context
As discussed in Chapter 10, Spring provides the LocalSessionFactoryBean class
as a factory for a SessionFactory object. The LocalSessionFactoryBean object is
configured as a bean inside the IoC container, with either a local JDBC DataSource
or a shared DataSource from JNDI.

The local JDBC DataSource can be configured in turn as an object of org.apache.
commons.dbcp.BasicDataSource in the Spring context:

<bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName">
 <value>org.hsqldb.jdbcDriver</value>
 </property>
 <property name="url">
 <value>jdbc:hsqldb:hsql://localhost/hiberdb</value>
 </property>
 <property name="username">
 <value>sa</value>
 </property>
 <property name="password">
 <value></value>
 </property>
</bean>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[357]

In this case, the org.apache.commons.dbcp.BasicDataSource (the Jakarta
Commons Database Connection Pool) must be in the application classpath.

Similarly, a shared DataSource can be configured as an object of
org.springframework.jndi.JndiObjectFactoryBean. This is the
recommended way, which is used when the connection pool is managed
by the application server. Here is the way to configure it:

<bean id="dataSource" class="org.springframework.jndi.
JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/jdbc/HiberDB</value>
 </property>
</bean>

When the DataSource is configured, you can configure the
LocalSessionFactoryBean instance upon the configured DataSource as follows:

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.
LocalSessionFactoryBean">
 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
 …
</bean>

Alternatively, you may set up the SessionFactory object as a server-side resource
object in the Spring context. This object is linked in as a JNDI resource in the JEE
environment to be shared with multiple applications. In this case, you need to use
JndiObjectFactoryBean instead of LocalSessionFactoryBean:

<bean id="sessionFactory" class="org.springframework.jndi.
JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/jdbc/hiberDBSessionFactory</value>
 </property>
</bean>

JndiObjectFactoryBean is another factory bean for looking up any JNDI resource.

When you use JndiObjectFactoryBean to obtain a preconfigured
SessionFactory object, the SessionFactory object should
already be registered as a JNDI resource. For this purpose, you may
run a server-specific class which creates a SessionFactory object
and registers it as a JNDI resource.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[358]

LocalSessionFactoryBean uses three properties: datasource, mappingResources,
and hibernateProperties. These properties are as follows:

datasource refers to a JDBC DataSource object that is already defined as
another bean inside the container.
mappingResources specifies the Hibernate mapping files located in the
application classpath.
hibernateProperties determines the Hibernate configuration settings.

We have the sessionFactory object configured as follows:

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.
LocalSessionFactoryBean">
 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
 <property name="mappingResources">
 <list>
 <value>com/packtpub/springhibernate/ch13/Student.hbm.xml</value>
 <value>com/packtpub/springhibernate/ch13/Teacher.hbm.xml</value>
 <value>com/packtpub/springhibernate/ch13/Course.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">org.hibernate.dialect.
HSQLDialect</prop>
 <prop key="hibernate.show_sql">true</prop>
 <prop key="hibernate.max_fetch_depth">2</prop>
 </props>
 </property>
</bean>

The mappingResources property loads mapping definitions
in the classpath. You may use mappingJarLocations, or
mappingDirectoryLocations to load them from a JAR file,
or from any directory of the file system, respectively.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[359]

It is still possible to configure Hibernate with hibernate.cfg.xml, instead of
configuring Hibernate as just shown. To do so, configure sessionFactory with the
configLocation property, as follows:

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.
LocalSessionFactoryBean">
 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
 <property name="configLocation">
 <value>/conf/hibernate.cfg.xml</value>
 </property>
</bean>

Note that hibernate.cfg.xml specifies the Hibernate mapping definitions in
addition to the other Hibernate properties.

When the SessionFactory object is configured, you can configure DAO
implementations as beans in the Spring context. These DAO beans are the objects
which are looked up from the Spring IoC container and consumed by the business
layer. Here is an example of DAO configuration:

<bean id="studentDao"
class="com.packtpub.springhibernate.ch13.HibernateStudentDao">
 <property name="sessionFactory">
 <ref local="sessionFactory"/>
 </property>
</bean>

This is the DAO configuration for a DAO class that extends HibernateDaoSupport,
or directly uses a SessionFactory property. When the DAO class has a
HibernateTemplate property, configure the DAO instance as follows:

<bean id="studentDao" class="com.packtpub.springhibernate.ch13.
HibernateStudentDao">
 <property name="hibernateTemplate">
 <bean class="org.springframework.orm.hibernate3.
HibernateTemplate">
 <constructor-arg>

 <ref local="sessionFactory"/>

 </constructor-arg>

 </bean>
 </property>
</bean>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[360]

According to the preceding declaration, the HibernateStudentDao class has
a hibernateTemplate property that is configured via the IoC container, to be
initialized through constructor injection and a SessionFactory instance as a
constructor argument.

Now, any client of the DAO implementation can look up the Spring context to obtain
the DAO instance. The following code shows a simple class that creates a Spring
application context, and then looks up the DAO object from the Spring IoC container:

package com.packtpub.springhibernate.ch13;

public class DaoClient {
 public static void main(String[] args) {
 ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "com/packtpub/springhibernate/ch13/
applicationContext.xml");
 StudentDao stdDao = (StudentDao)ctx.getBean("studentDao");StudentDao stdDao = (StudentDao)ctx.getBean("studentDao");
 Student std = new Student();Student std = new Student();

 //set std properties

 //save std
 stdDao.saveStudent(std);
 }
}

Spring transaction management
One reason to integrate Hibernate with Spring is transaction management. Spring
provides a transaction abstraction layer over the Hibernate transaction API, and
enables persistent operations to participate in global transactions. Moreover, Spring
provides declarative transaction demarcation, which produces more readable and
maintainable Java code. The declarative approach lets us change the transaction
strategy easily, without changing the code.

The Spring transaction demarcation API has two classes for working with
Hibernate applications:

org.springframework.transaction.support.TransactionTemplate for
a programmatic approach.
org.springframework.transaction.interceptor.
TransactionProxyFactoryBean for a declarative approach.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[361]

Behind this API, you may use one of Spring's two transaction managers:

org.springframework.orm.hibernate3.HibernateTransactionManager:
Use this when the application involves a single data source and Hibernate
alone is needed. This covers local transactions executed on a single
SessionFactory. This manager is commonly used, since most Hibernate
applications work with a single database.
org.springframework.transaction.jta.JtaTransactionManager: This
is Spring's global JTA transaction manager. Use it when the application
participates in global transactions in a Java EE environment, in which
multiple SessionFactory methods are involved, and transactions are
scattered over them.

Note that we can develop DAO classes that are not involved in transaction
management. This is an advantage Spring provides for the application, so that all
DAO classes work with transactional Session objects provided behind the scenes by
the Spring IoC container.

You configure Spring's transactions by setting up the transaction-manager instance
as a bean inside the IoC container. The bean configuration depends on which
transaction strategy you are using: local or global.

Lets look at the transaction configuration in detail.

Local transactions
When the application uses only a single data source (a single SessionFactory
in Hibernate), you can define the transaction manager as an instance of
HibernateTransactionManager as follows:

<bean id="transactionManager"
 class="org.springframework.orm.hibernate3.
HibernateTransactionManager">
 <property name="sessionFactory">
 <ref bean="sessionFactory"/>
 </property>
</bean>

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[362]

Then, define DAO and Service beans, respectively, as instances of the DAO and
service classes. Here is an example:

<bean id="persistenceService"
 class="com.packtpub.springhibernate.ch13.PersistenceService">
 <property name="studentDao">
 <ref bean="studentDao"/>
 </property>
 </bean>
<bean id="studentDao"
 class="com.packtpub.springhibernate.ch13.HibernateStudentDao">
 <property name="sessionFactory">
 <ref bean="sessionFactory"/>
 </property>
</bean>

Finally, the DAO instances are wrapped in a proxy transaction. As you saw in
Chapter 11, transactions are cross-cutting concerns that are not dedicated to the
function of a particular method. Instead, they are scattered over many persistence
methods. With Spring, DAO functionality can be split into two modules:

DAO implementations, which perform persistence operations.
Transaction advice, which defines how persistence operations are performed
in transactions.

Modularizing DAO implementations to carry out persistence operations, and not
transaction management, avoids boilerplate transaction-management code in every
persistence method. To apply transaction advice to the target methods in the DAO
implementations, we need proxy objects.

Each proxy is an object that intermediates between two other objects (a calling object
and an invoked object), and applies a concern (a transaction in our case) to the object
invocation. Actually, the business layer always works with instances of proxies
instead of service objects. Here is an example of the transaction proxy definition:

<bean id="studentDao"
class="org.springframework.transaction.interceptor.
 TransactionProxyFactoryBean">
 <property name="transactionManager">
 <ref bean="transactionManager"/>
 </property>
 <property name="target">
 <ref bean="persistenceService"/>
 </property>

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[363]

 <property name="transactionAttributes">
 <props>
 <prop key="save*">PROPAGATION_REQUIRED</prop>
 <prop key="*">PROPAGATION_REQUIRED,readOnly</prop>
 </props>
 </property>
</bean>

As you saw in Chapter 12, the TransactionProxyFactoryBean object is configured
with three properties:

transactionManager, declared as an individual bean, is an object which
provides an abstraction API between the application code and Hibernate
transaction API.
target represents the object to which the transaction concern must
be applied.
transactionAttributes defines how to select the transactional methods.
For instance, save* selects all methods of the target object that start with the
save word.

In our example, PROPAGATION_REQUIRED and readOnly specify, respectively, how
multiple transactions participate, and whether the transaction is allowed to only read
the data.

Global transactions
You can configure Spring to use global transactions for synchronizing persistent
operations that are performed in a Java EE environment across multiple data sources.
The configuration process is similar to configuring a local transaction, but you need
to define multiple data sources, as well as multiple SessionFactory and DAOs.

The transaction-manager object is now defined as an instance of
JtaTransactionManager, instead of HibernateTransactionManager.
Here is an example:

<beans>
 <!-- the datasource1 declartion, registered to node ds1 on the JNDI
tree-->
<bean id="datasource1" class="org.springframework.jndi.
JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/jdbc/ds1</value>
 </property>
 </bean>

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[364]

 <bean id="datasource2" class="org.springframework.jndi.
JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/jdbc/ds2</value>
 </property>
 </bean>

 <!-- the sessionFactory1 declaration, which uses datasource1-->
 <bean id="sessionFactory1"
 class="org.springframework.orm.hibernate3.
LocalSessionFactoryBean">
 <property name="mappingResources">
 <list>
 <value>Student.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.MySQLDialectorg.hibernate.dialect.MySQLDialect
 </prop>
 </props>
 </property>
 <property name="dataSource">
 <ref bean="dataSource1"/>
 </property>
 </bean>

 <!-- the sessionFactory2 declartion, which uses datasource2-->
 <bean id="sessionFactory2"
 class="org.springframework.orm.hibernate3.
LocalSessionFactoryBean">
 <property name="mappingResources">
 <list>
 <value>Teacher.hbm.xml</value>
 <value>Course.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </prop>
 </props>
 </property>
 <property name="dataSource">
 <ref bean="dataSource2"/>
 </property>
 </bean>

 <!-- TransactionManager declaration -->
 <bean id="transactionManager"

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[365]

 class="org.springframework.transaction.jta.
JtaTransactionManager"/>

 <!-- A DAO configuration with the sessionFactory1-->
 <bean id="studentDao"
class="com.packtpub.springhibernate.ch13.HibernateStudentDao">
 <property name="sessionFactory">
 <ref bean="sessionFactory1"/>
 </property>
 </bean>

 <!-- A DAO configuration with the sessionFactory2-->
 <bean id="teacherDao"
class="com.packtpub.springhibernate.ch13.HibernateTeacherDao">
 <property name="sessionFactory">
 <ref bean="sessionFactory2"/>
 </property>
 </bean>

 <!-- A service instance configuration which reside in the business
layer -->
 <!-- and works with both StudentDao and TeacherDao instances-->
 <bean id="persistenceServiceTarget"
 class="com.packtpub.springhibernate.ch13.PersistenceService">
 <property name="studentDao">
 <ref bean="studentDao"/>
 </property>
 <property name="teacherDao">
 <ref bean="teacherDao"/>
 </property>
 </bean>

 <!-- A proxy configuration, which applies the transactions on the
DAO methods-->
 <bean
 id="persistenceService"
 class="org.springframework.transaction.interceptor.
 TransactionProxyFactoryBean">
 <property name="transactionManager">
 <ref bean="transactionManager"/>
 </property>
 <property name="target">
 <ref bean="persistenceServiceTarget"/>
 </property>
 <property name="transactionAttributes">
 <props>
 <prop key="save*">PROPAGATION_REQUIRED</prop>
 <prop key="*">PROPAGATION_REQUIRED,readOnly</prop>PROPAGATION_REQUIRED,readOnly</prop>
 </props>
 </property>
 </bean>

</beans>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Integrating Hibernate with Spring

[366]

Alternatively, you can configure the transaction manager as a bean of type
JndiObjectFactoryBean in the IoC container. JndiObjectFactoryBean is a factory
bean which obtains the transaction-manager object by looking up a JNDI resource. If
you choose this strategy, the SessionFactory configuration changes as follows:

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.
LocalSessionFactoryBean">
 <property name="dataSource">
 <ref bean="dataSource"/>
 </property>
 <property name="jtaTransactionManager">
 <ref bean="transactionManager"/>
 </property>
 <property name="mappingResources">
 <list>
 <value>com/packtpub/springhibernate/ch13/Student.hbm.xml</value>
 <value>com/packtpub/springhibernate/ch13/Teacher.hbm.xml</value>
 <value>com/packtpub/springhibernate/ch13/Course.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">
 org.hibernate.dialect.HSQLDialectorg.hibernate.dialect.HSQLDialect
 </prop>
 </props></props>
 </property>
</bean>

You must also configure a transaction-manager object:

<bean id="transactionManager"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp/env/jdbc/mytm</value>
 </property>
</bean>

In this way, we configured transactionManager as a bean produced by
JndiObjectFactoryBean. This factory bean returns transaction-manager objects by
looking up a server-specific JNDI location.

Please refer to Chapter 12 for more details about transaction management.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 13

[367]

Summary
In this chapter, you learned about the Data Access Object (DAO) pattern. This
pattern allows all interaction with the data tier to be done through specific classes,
called DAO classes. According to this pattern, a DAO interface is defined to
correspond to each DAO class, defining all persistent operations that the business
layer needs. The main goal is to decouple the business layer from the data layer.
DAO interfaces are the only references that the business layer uses to perform
persistent operations. At this point, Spring is configured to instantiate these
references with the actual implementations at runtime.

You can integrate Hibernate with Spring to simplify DAO implementation. Spring
provides a transaction abstraction layer on the local transaction API provided by
Hibernate, and allows declarative transaction demarcation. Moreover, it converts
HibernateException into Spring's generic DataAccessException hierarchy, and
allows the use of IoC in the data tier.

Spring supports DAO implementation with two helper classes: org.
springframework.orm.hibernate3.HibernateTemplate and org.
springframework.orm.hibernate3.support.HibernateDaoSupport. All
DAO classes extend HibernateDaoSupport and use HibernateTemplate
to perform persistent operations. Spring provides org.springframework.
orm.hibernate3.LocalSessionFactoryBean as a factory bean to configure
and set up a SessionFactory object in an IoC-style manner. For transaction
management, Spring provides org.springframework.orm.hibernate3.
HibernateTransactionManager and org.springframework.transaction.jta.
JtaTransactionManager for managing local and global transactions, respectively.
Moreover, Spring provides org.springframework.transaction.interceptor.
TransactionProxyFactoryBean, which acts as a proxy to apply transaction
concerns to persistent operations.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Web Development with
Hibernate and Spring

Most enterprises applications today provide a web-based user interface to interact
with end users. This means Hibernate and Spring developers often encounter
situations involving web development. The problem is that the JSP and servlet
technologies typically used to produce dynamic web content are not simple Java
classes to be configured in the Spring context.

This chapter begins by exploring how Model-View-Controller (MVC) web
frameworks are integrated with Spring, and then briefly discusses the Spring
MVC components and features.

When a web application uses Hibernate without Spring, every JSP page
or servlet class can simply obtain a service object to interact with the
business layer, and persist the entity objects via Hibernate behind the
scenes. The problem is when Hibernate and Spring are used together, we
expect Spring to inject objects via IoC in JSP or Servlet pages. As soon as
you obtain Spring-managed objects in JSP pages or servlet classes, you
can interact with Hibernate via the Spring-managed service objects.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Web Development with Hibernate and Spring

[370]

Problem definition
Let's take a simple portion of our sample application to explain how to use Spring
in web applications. Consider this use case: the user submits a web request with a
student identifier to see a student's details. The web layer of the application obtains a
StudentService instance by looking up the Spring context. The StudentService is
configured as a bean in applicationContext.xml, as follows:

<bean id="studentService"
 class="com.packtpub.springhibernate.ch14.StudentService">
 <property name="studentDao">
 <ref local="studentDao"/>
 </property>
</bean>

The web layer then uses the getStudent() method on the StudentService instance
to get the requested student. The getStudent() method signature provided by
StudentService is as follows:

public Student getStudent(String studentId)

In upcoming sections, we will discuss how each web technology deals with this
problem. Before we do that though, let's look at the basic configuration that is
always applied to each framework.

Common configuration for Spring integration
Web applications include JSP pages and servlets, which provide dynamic content for
end users. To integrate web applications with Spring, we must access Spring services
in these JSP pages and servlets. Fortunately, we can do this using ServletContext, a
long-lived object initialized at application startup that's accessible in every JSP page
and servlet. The servlet specification also defines that we can implement a context
listener to execute customized behavior when the ServletContext is initialized or
destroyed. Using the ServletContext and a context listener, we can load the Spring
context at application startup, and store the loaded context in ServletContext.

Spring provides org.springframework.web.context.ContextLoaderListener
as the context listener, which loads the Spring context, and stores it in the
ServletContext. To use this listener, you need to configure it in web.xml, as follows:

<web-app>
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 ...
</web-app>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 14

[371]

By default, ContextLoaderListener loads the Spring context file named
applicationContext.xml located in the application's /WEB-INF directory.
However, you can load a Spring context with another name or location. For this
purpose, you can use the <context-param> element in web.xml to specify the
name and location of the Spring context, as follows:

<web-app>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/springContext.xml</param-value>
 </context-param>
 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>
 ...
</web-app>

This example specifies springContext.xml as the name of the Spring context file,
which is located in the web application's root directory.

Spring provides org.springframework.web.context.support.
WebApplicationContextUtils as a utility class to access the Spring context in a JSP
page. This class provides the following two static methods to access the application
context stored in the ServletContext:

public static WebApplicationContext
 getRequiredWebApplicationContext(ServletContext sc)

and

public static WebApplicationContext getWebApplicationContext
(ServletContext sc)

These methods do the same job with the only difference that if no Spring
context is found, the getWebApplicationContext() method returns null, but
getRequiredWebApplicationContext() throws an IllegalStateException. The
following code shows how you can call getRequiredWebApplicationContext()in a
JSP page to obtain the ApplicationContext:

ApplicationContext context =
 WebApplicationContextUtils.getRequiredWebApplicationContext(
 application);

application represents the ServletContext object that is provided by the web
container in all JSP pages.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Web Development with Hibernate and Spring

[372]

The getRequiredWebApplicationContext() method is useful when
the context is absolutely required, and you need the application to treat
the absence of the Spring context file as an error.

You may use the same code to obtain the Spring context in a servlet class, but you
need to obtain the ServletContext via the getServletContext() method, instead
of using the application variable, as follows:

ServletContext sContext = getServletContext();
ApplicationContext appContext =
WebApplicationContextUtils.getRequiredWebApplicationContext(sContext);

Before discussing how to integrate practical web frameworks with Spring, let's look
at the common MVC pattern implemented by web frameworks.

The MVC architectural pattern
The Model-View-Controller (MVC) pattern's purpose is to decouple user
interfaces, data, and business logic, which are called views, models, and
controllers, respectively. This separation simplifies application architecture and
makes development, testing, and maintenance easier. This architecture avoids code
duplication in many situations, and provides reusability in views, models, and
business logic.

All web frameworks implement the MVC pattern. The following figure depicts the
basic scenario that is accomplished in web frameworks for a typical user request:

Client
(Web Browser)

Server
(Web Server)

Controller

Model

View

The controller is an object that processes the request, updates the model object, and
forwards the request to the view. The JSP page uses the updated model to generate
output for the user.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 14

[373]

The following list provides a summary of the MVC components in web frameworks:

Model components: These components provide an interface to the data
and services used by the application. In some cases, model components
are simple value objects, represented as instances of simple JavaBeans,
transmitted between view and controller components. However, model
components can be more complex and include business logic to access and
manipulate data, such as Enterprise JavaBeans (EJBs). Model components
allow controller components to work transparently with view components.
View components: These components are responsible for generating
the application view, which is what the user sees, based on the model
components. Most of the time, view components are simple JSP or HTML
pages. However, they can be of any other type, such as PDFs.
Controller components: These components have a crucial role in the MVC
model. Sometimes, it is possible to omit a model component, or even a view
component, but controller components are essential. The controller receives
requests, processes them, creates the model, and forwards the prepared
model to the view component.

Web frameworks use an additional object, called a front controller servlet. This
object, which is responsible for receiving requests and dispatching them to the
appropriate controllers, allows us to create cleaner code that eliminates unnecessary
request processing in controllers. The following figure shows the role of the front
controller servlet in a web framework's architecture:

Client
(Web Browser)

Server
(Web Server)

Front Controller

ControllerModel

View

Now that I've given some background material regarding web frameworks, let's look
at some actual web frameworks and see how we can integrate them with Spring in
order to provide Spring services in a web implementation.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Web Development with Hibernate and Spring

[374]

This chapter looks at two primary web frameworks that implement the
MVC pattern. First, I'll discuss Spring, with which you can easily use
other Spring services in web implementations. Then, I'll explain Struts,
an older, very popular web framework. You can find more information
about integrating other frameworks in the Spring documentation.

Spring MVC web framework
Spring is a popular MVC-based web framework. Besides many services, such as
IoC, AOP, and transaction management provided by Spring and discussed so
far, Spring provides full functionality for building robust web applications. This
functionality is supported in two ways. First, Spring can be integrated with other
web frameworks, such as Struts, WebWork, Java Server Faces, and Tapestry in order
to use Spring's services such as IoC and AOP, and second, Spring provides its own
MVC web framework.

In this section, we will look at Spring MVC and its various components, including
Dispatcher Servlet, Handler Mappings, Controllers, Model and Views, and View
Resolvers. As advantages of Spring, Spring MVC is not tightly coupled with Servlet
and JSP to render the View to the clients, and can be integrated with other view
technologies like Velocity, Freemarker, Excel, and PDF.

Spring MVC workflow
Before digging into Spring MVC details, let's explore Spring MVC architecture and
various components involved. The main components are front controller, handler
mappings, controllers, view resolvers, and views. The basic workflow to handle a
request are as follows:

1.	 A web request is submitted to the application.
2. The Front Controller receives the request and interprets it to find the

appropriate handle mapping. The handle mapping maps the request to an
appropriate Controller object.

3. The front controller forwards the request to the controller object.
4. The controller receives the request, processes it, and returns a Model and

View object to the front controller.
5. The front controller uses View Resolvers to find the appropriate View object.
6. The view object is used to render the result which then sends it back to

the client.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 14

[375]

Now let's continue our discussion with a bit of a detailed explanation on
each component.

Front controller
The front controller in Spring MVC is an object of org.springframework.web.
servlet.DispatcherServlet. As the first step to use Spring MVC, you need to
configure front controller in web.xml to intercept all of the client requests. This is
done as follows:

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.html</url-pattern>
</servlet-mapping>

This configuration tells the container all requested URLs with .html extension
must be processed by the DispatcherServlet object. In addition to being a front
controller object, the DispatcherServlet object finds the Spring application context
file named as <servlet-name>—servlet.xml and located in /WEB-INF directory. In
our case, this means DispatcherServlet tries to find /WEB-INF/action-servlet.
xml, and then loads and binds it to the ServletContext object. Alternatively, it is
also possible to use ContextLoaderListener discussed to load the Spring context
files. You need to use this approach if you have different file names, or the context
files are located in a different directory than WEB-INF.

Handler mappings
As mentioned, the DispatcherServlet object finds an appropriate handler mapping
object, and then uses it to map the request to a controller. Actually, the handler
mapping object tells Spring how the requested URL must be mapped to controllers.
The most common types of handler mappings are BeanNameUrlHandlerMapping,
ControllerClassNameHandlerMapping, SimpleUrlHandlerMapping. These handler
mappings are explained as follows:

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Web Development with Hibernate and Spring

[376]

BeanNameUrlHandlerMapping
This handler mapping simply maps the requests to controller based on the name
of the requested URLs. For instance, for the URL http://hostname:port/
webAppName/viewStudent.html, the request is passed to a controller configured as:

<bean name="/viewStudent.html"
 class="com.packtpub.springhibernate.ch14.ViewStudentController">
</bean>

To use this handler mapping, BeanNameUrlHandlerMapping must be configured as a
bean in the Spring context as:

<bean id="beanNameUrl" class="org.springframework.web.servlet.
handler.BeanNameUrlHandlerMapping"/>

ControllerClassNameHandlerMapping
This handler mapping takes the name of the controller from the requested URL
with some modifications. For instance, requests for any URLs that follow the pattern
/viewStudent* will be processed by the controller ViewStudentController. This
handler mapping simply strips Controller off the controller's name to determine
the URLs for that controller. To use this kind of mapping, you need to have a bean
definition as follows:

<bean id="controllerClassName" class=" org.springframework.web.
servlet.mvc.support.ControllerClassNameHandlerMapping "/>

SimpleUrlHandlerMapping
Directly maps the URLs to controllers. The following code shows how this mapping
is configured and used:

<bean id="simpleUrlMapping"
class="org.springframework.web.servlet.handler.
SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/viewStudent.html">
 viewStudentController
 </prop>
 <prop key="/listStudents.html">
 listStudentController
 </prop>
 <prop key="/deleteCourse.html">
 deleteCourseController

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 14

[377]

 </prop>
 </props>
 </property>
</bean>

The URL /viewStudent.html will be processed by a controller named
viewStudentController in the Spring context.

Controllers
Controllers have the responsibility to process the requests, do the business logic,
and produce the viewable result. Spring provides the Controller interface as the
super-interface for all controller implementations. This interface is as follows:

public interface Controller {
ModelAndView handleRequest(HttpServletRequest request,
 HttpServletResponse response) throws Exception;
}

To make it easy, Spring provides a variety of built-in controller implementations,
which is useful for a specific purpose. The most common controllers are as follows:

AbstractController

AbstractCommandController

SimpleFormController

CancellableFormController

MultiActionController

ParameterizableViewController

ServletForwardingController

ServletWrappingController

UrlFilenameViewController

Let's have a quick look at some of these controllers and the way they are used.

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Web Development with Hibernate and Spring

[378]

AbstractController
This class provides the basic implementation for all other Spring built-in controllers.
Therefore, you shouldn't implement a custom implementation of the Controller
interface if you want to implement a custom controller from scratch. The
AbstractController class provides the protected handleRequestInternal()
method to be implemented by subclasses. This method receives two parameters as
object of HttpServletRequest and HttpServletResponse, just like servlet methods
and returns an object of ModelAndView. The ModelAndView object is a Spring specific
class representing the model, the result of request processing, and information about
the target page that will render the model. The ModelAndView object doesn't directly
refer to a specific page. Instead, it just provides a logical view name to be mapped to
the physical path of the target page. The ModelAndView class will be discussed later
in this chapter.

The following code shows how our ModelAndView can be implemented with
AbstractController:

package com.packtpub.springhibernate.ch14;

import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.AbstractController;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ViewStudentController extends AbstractController {
 StudentService studentService;

 public ModelAndView handleRequestInternal(HttpServletRequest
request, HttpServletResponse response)
 throws Exception {
 // create a model-and-view object
 ModelAndView modelAndView = new ModelAndView("viewStudent");
 String studentId = request.getParameter("studentId");
 Student student = studentService.getStudent(studentId);
 // add an object to render in the view
 modelAndView.addObject("student", student);
 return modelAndView;
 }

 public void setStudentService(StudentService studentService) {
 this.studentService = studentService;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 14

[379]

Note that the dispatcher servlet always calls the handleRequest()
method to forward the request to a AbstractController object.
The AbstractController object does some control checking.
Namely, checking if the HTTP request method is supported by
this controller, checking whether session exists if it needs the
session, setting cache control headers, and so on, and then calls the
handleRequestInternal() method internally to process the request.

AbstractCommandController
This controller is essentially used to process a user request, which always build with
parameters. This class provides a handle() method which takes an object parameter
in addition to HttpServletRequest and HttpServletResponse. With this kind of
controller, we can deal with a command object, including all of the submitted values,
instead of working with HttpServletRequest to obtain the request parameters. The
command object can be a simple POJO object populated with request parameters.
The following code shows our simple example, which now is implemented with
AbstractCommandController:

public class ViewStudentController extends AbstractCommandController {

 StudentSeverice service;

 public ViewStudentController() {
 setCommandClass(StudentInfo.class);
 }

 protected ModelAndView handle(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException errors) throws Exception {
 StudentInfo info = (StudentInfo) command;
 Student std = //service object to obtain the student
 if(std == null){
 return new ModelAndView("failure");
 }else{
 return new ModelAndView("success", "student", std);
 }
 }

 public void setService(StudentSeverice service) {
 this.service = service;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Web Development with Hibernate and Spring

[380]

Note how in the constructor we introduced the command class to the controller.

The handle() method takes a BindException object, which represents
the validation result of command object, if validation has been set for
that command.

The following code shows the command class:

public class StudentInfo {
 String id;
 public String getId() {
 return id;
 }
 public void setId(String id) {
 this.id = id;
 }
}

SimpleFormController
SimpleFormController is used to handle request submission. This controller
provides a variety of methods to process the user submission.

The following code uses the onSubmit() method in the controller to process
the request:

public ModelAndView onSubmit(Object command) throws Exception{
 StudentInfo info = (StudentInfo) command;
 Student std = //service object to obtain the student
 if(std == null){
 return new ModelAndView("failure");
 }else{
 return new ModelAndView("success", "student", std);
 }
 }

The input page, which provides the submission information to this controller,
and the success page, which renders the result, are respectively specified via the
formView and successView properties. The following bean configuration shows
how SimpleFormController is configured:

<bean id = "studentView" class="StudentViewController">

 <property name="formView">
 <value>allStudents</value>
 </property>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 14

[381]

 <property name="successView">
 <value>studentDetails</value>
 </property>

</bean>

Note that the values are just logical view names, which are then mapped to the
physical page locations.

CancellableFormController
This controller provides more functionality over SimpleFormController. By
this kind of controller, it is possible to handle the user cancelation for the form
submission by its onCancel() method. The following code shows how onCancel()
is implemented:

public ModelAndView onCancel(Object command) throws Exception{
 return new ModelAndView("viewAll");
}

The onCancel() method is called to process the request when the framework finds
a request parameter named _cancel. You can change this parameter name by
the cancelParamKey property for the CancellableFormController object. The
following code shows how CancellableFormController is configured:

<bean id="viewStudentController" class="com.packtput.springhibernate.
ch14.ViewStudentController">
 <property name="useCacheControlHeader" value="false"/>
 ...
 <!-- Required for CancellableFormController -->
 <property name="cancelParamKey" value="cancel"/>
 <property name="cancelView" value="redirect:myCancel.action"/>

 <!-- Standard FormController properties -->
 <property name="formView" value="studentList.jsp"/>
 <property name="successView" value="success"/>
</bean>

Model and View
In the Spring MVC, each controller returns an object of org.springframework.
web.servlet.ModelAndView, representing the model and the logical view name
to render the model. The ModelAndView object includes three parts, the model, a
map object, and the view, an implementation of the org.springframework.web.
servlet.View interface. The view can be a simple string literal that is mapped by
the view resolver to an actual JSP page.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Web Development with Hibernate and Spring

[382]

View resolvers
Finally, when the data is ready to render, the view resolver is invoked to find
the actual JSP page responsible to render the result. Similar to controllers,
Spring provides a variety of view resolvers, all as implementation of the
org.springframework.web.servlet.ViewResolver interface. The view
resolvers Spring provides are BeanNameViewResolver, FreeMarkerViewResolver,
InternalResourceViewResolver, JasperReportsViewResolver,
ResourceBundleViewResolver, UrlBasedViewResolver,
VelocityLayoutViewResolver, VelocityViewResolver, XmlViewResolver,
XsltViewResolver. Here, we will just look at two most common view resolvers,
InternalResourceViewResolver and BeanNameViewResolver.

InternalResourceViewResolver
This view resolver simply appends prefix and suffix to the logical view name to find
the physical page locations. For instance, the following configured view resolver
object maps any logical view name to a JSP page with the same name located in the
WEB-INF directory:

<bean id="viewResolver" class="org.springframework.web.servlet.view.
InternalResourceViewResolver">
 <property name="prefix"><value>/WEB-INF/</value></property>
 <property name="suffix"><value>.jsp</value></property>
</bean>

By this code, if the logical view name has been set to viewStudent, the /WEB-INF/
viewStudent.jsp page is chosen to render the result.

BeanNameViewResolver
BeanNameViewResolver allows us to dynamically generate in any format, which is
something that is not possible with InternalResourceViewResolver. For instance,
suppose we want to generate a PDF page from the model on the fly. It is possible
to use BeanNameViewResolver with an implemented AbstractPdfView object to
generate the PDF. The following shows the code to do so:

<bean id="beanNameResolver" class="org.springframework.web.servlet.
view.BeanNameViewResolver"/>
<bean id = "pdf" class = "com.packtpub.springhibernate.ch14.
CustomPdfGenerator"/>

Any ModelAndView object with the logical pdf view name will then be processed by
CustomPdfGenerator.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 14

[383]

Render the result through JSP
Finally, a JSP page can render the result. The following code shows a partial JSP page
to render the student instance:

<table width="637" border="0" cellspacing="0" cellpadding="0">
 <tr>
 <td>Student Number</td>
 <td><c:out value="${student.stdNo}"/></td>
 </tr>
 <tr>
 <td>First Name</td>
 <td><c:out value="${student.firstName}"/></td>
 </tr>
 <tr>
 <td>Last Name</td>
 <td><c:out value="${student.lastName}"/></td>
 </tr>
 <tr>
 <td>SSN</td>
 <td><c:out value="${student.ssn}"/></td>
 </tr>
 <tr>
 <td>Birthday</td>
 <td><fmt:formatDate value="${student.birthday}"
 type="both"/></td>
 </tr>
 <tr>
 <td>Entrance Date</td>
 <td><fmt:formatDate value="${student.entranceDate}"
 type="both"/></td>
 </tr>
 </table>

There is nothing special about this page, only that is uses JSTL to render the
student instance.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Web Development with Hibernate and Spring

[384]

Summary
This chapter discussed how to use Spring in web applications. We started
with a quick overview of the MVC pattern. Our discussion continued with the
common configuration to integrate web frameworks with Spring. We used the
org.springframework.web.context.ContextLoaderListener class to load
the Spring application context at application startup, and then store it in the
ServletContext. In any JSP page or servlet class, the stored ApplicationContext
can be accessed through Spring utility class: org.springframework.web.util.
WebApplicationContextUtils.

To develop a web application with the Spring MVC framework, you must configure
the DispatcherServlet as the front controller. DispatcherServlet accepts all web
requests, and forwards each to the appropriate controller. You must also configure
the web application to use ContextLoaderListener to load the Spring context
files at application startup. You will be able to implement controller classes as an
implementation of Controller, and configure them in the Spring context as beans.
Additionally, you should specify a resolver, which resolves names to paths, and
use handler mapping to map URL patterns to bean names. You can then render the
result in JSP pages.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Testing
When developing an application, we need to apply a testing mechanism to ensure
that the application works as we intend. In practice, different kinds of testing exist,
each with different goals, including quality assurance testing, acceptance testing,
performance testing, integration testing, and unit testing. Customer satisfaction
tests, performed by the quality assurance team, verify that the application meets the
customer's needs and expectations. Acceptance tests exercise all operating conditions
of the user's environment or features of the system. Performance tests evaluate
how the application responds to a large number of requests, specifically testing
the application's robustness, memory usage, and response time. Integration tests
ensure that all of the application's parts work correctly when they are assembled
in a simulated production environment.

However, not all of these tests are the subject of this chapter. Instead, this chapter
discusses two types of testing: unit testing, to test all smallest parts of the application
work properly, and integration testing, to make sure these smallest parts work
correctly when they merge. Unit testing is the first step in the application testing
process and uncovers defects and program errors. The developers write and execute
simple blocks of code as tests, verifying the functions, behavior, and performance of
an object to make sure that the object meets its functional requirements. Unit testing
allows developers to produce more productive and effective code with fewer bugs.
Integration testing means testing the combination of units.

This chapter discusses the aspects of Hibernate and Spring applications that require
testing and how to implement test cases for those aspects. Our discussion begins with
a quick overview of unit testing and the popular unit test framework JUnit. We'll then
discuss how JUnit lets us create effective test code and run it automatically.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Testing

[386]

An introduction to unit testing
A unit test is a chunk of code that examines the functionality of a very small part of
the application code: in practice, a method. Developers write unit tests to find defects
and verify that their code meets its requirements in isolation from other code in the
application. The test should provide all of the possible circumstances, situations,
and conditions in which the code may be executed and that may potentially break
the code. Unit testing is part of the philosophy that, when we're developing code,
we should find any defects as soon as possible. The longer a bug exists, the more
dramatically the cost of finding and fixing a bug increases. Using unit testing,
developers can learn, as soon as possible, where and how their code breaks, fix
the problem, and test again and again until no problem exists.

During application development, when you add a component to the application,
you must implement and add a unit test, as well. Each unit test guarantees that a
component works as expected. After the application has been fully developed, you
will have a set of unit tests for all of the application's components. If all components
pass the tests without any failures, you can conclude that the application's
components work properly in isolation from each other.

In practice, we implement a test class for each class of the application. Each test class
implemented with JUnit is called a test case. For each method of the class being
tested, we implement one or more test methods in the test class. To examine whether
a method works as it should, we must call the method with its required parameters
and conditions in a test method, and then verify that the method's result is what
we expect.

The following figure shows the relationship between application classes and
unit tests:

Application Test Application

Class1
tests +methodA()

+methodB()

TestCaseClass1

+testMethodA1()
+testMethodA2()
+testMethodB()

Test classes include test methods. Each test method provides a particular condition
that may break the method under test, invokes the method under test, and verifies
the result.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 15

[387]

Unit testing with JUnit
JUnit is a Java framework for unit testing. The benefits of using JUnit, rather than
implementing unit tests on your own code, can be summarized as follows:

Create simple and effective test programs.
Create test programs in a public and standard structure.
Receive a report of the test's results.
Execute the tests automatically with Ant.

JUnit is the foundation for more specialized unit-testing tools, such as Cactus, mocks,
JMeter, Jester, JUnitPerf, DbUnit, and HttpUnit.

JUnit can be found at http://www.junit.org, along with sample usages
and documentation.

The structure of test classes with JUnit
New releases of JUnit support annotation-based unit tests. Therefore, we can develop
unit test in a different style of old releases of JUnit. Here we will discuss the old and
new approaches and for that we will use JUnit 3.8 as the old version and JUnit 4.0 as
the new version.

JUnit provides a basic test class, called junit.framework.TestCase. To develop
with JUnit 3.8, we must always create a subclass of TestCase as a test class for each
class being tested with JUnit. TestCase is a JUnit utility class which provides basic
assertion methods (discussed soon) to verify test results. Moreover, JUnit's test
runners identify test classes that extend the TestCase class in order to execute them.

As a convention, name test classes after the class being tested with a common
prefix or suffix, such as TestCase. This naming convention allows you to identify
the test classes throughout the application and give Ant a pattern for automatic
test execution. As a mandatory naming convention with JUnit 3.8 and before, the
name of the test method is the name of the method being tested with the test
prefix. This convention allows JUnit's test runners to distinguish the test methods
from other helper methods inside test classes. For instance, a method that tests the
saveStudent() method would be named testSaveStudent(). If more than one
test method exists for a method, you can append a number: testSaveStudent1(),
testSaveStudent2(), and so on.

With JUnit 4.0, the test case class doesn't need to extend the TestClass, and the test
method's name no longer needs to start with test. Any class can be used as a test case,
in which test methods are marked with the @Test annotation.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Testing

[388]

Whether you are using JUnit 3.8 or JUnit 4, test classes must follow these steps,
in order:

1. Provide the required conditions and circumstances that are needed to test
the method.

2. Call the method being tested in the test method.
3. Verify the method's result to check whether it operated as expected.
4. Perform finalization operations.

Let's go through this process.

Setting up the preconditions
Each test case has its own preconditions, which must be provided before execution
of any test. With JUnit 3.8, you need to implement the TestCase's setUp() method
as follows:

protected void setUp();

This method is automatically called by JUnit before each test method is executed.
You can override it to provide the preconditions for executing the test methods
(all methods in the test class named with the test prefix). Typically, you may use
this method to create the required objects for invoking the method being tested, look
up a resource, and so on.

With JUnit 4, you can mark any method with the @org.junit.Before annotation to
act as the setUp() method.

Call the method being tested and verify the result
With JUnit 3.8, test methods with the test prefix call the methods being tested with
the required parameters and check for the expected result. Here is an example of a
test method:

public void testSaveStudent() {
 //call the method being tested
 //verify the result
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 15

[389]

Test methods have void as the return type and take no argument. These methods
call the methods of the object(s) prepared by the setUp() method. To verify the
result, the TestCase class provides some helper methods, called assertion methods.
Assertion methods help you compare the result with the value you expected.
For instance, if you expect the return value of a method to be 1, you may use the
following code to verify it:

assertEquals("Should be 1", 1, result);

The result is the actual returned value of the method invocation. JUnit checks
whether the result equals 1. If it does, the test succeeds, and if not, the test fails and
the message "Should be 1" is reported via the application console, the log files, or
another user interface (based on how the test is executed). The message argument for
assertion methods, "Should be 1" in this case, is optional.

JUnit provides many other useful assertion methods. The following table shows
some significant TestCase assertion methods:

Method Description
assertEquals([String
message],expected, actual)

Verifies that the actual value is the expected
one. For primitive types, such as boolean,
int, short, and so on, this method performs
a simple value comparison. For objects,
this method uses the equals() method to
perform comparison.

assertNull([String message],
Object o)

assertNotNull([String message],
Object o)

Checks whether the object o is null or is not
null.

assertSame([String message],
expected, actual)

assertNotSame([String message],
expected, actual)

Checks whether the expected and actual
objects have the same reference, or do not
have the same reference.

assertTrue([String message],
boolean condition)

assertFalse([String message],
boolean condition)

Checks whether the condition variable is
true or false.

fail([String message]) Fails the test intentionally when an undesired
condition happens. For instance, this method
can be used in a section of code that must
never be reached (for example, in a catch
block if you do not expect an exception be
thrown, or immediately before a catch block
if you do expect an exception to be thrown).

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Testing

[390]

The message argument shown as [String message] in all of the
methods listed in the table above is optional. This argument represents
the message that is reported if the test fails.

With JUnit 4, test methods are simple public methods marked with the @Test
annotation. Here is an example:

@Test

public void saveStudent() {
 //call the method being tested
 //verify the result
}

To make assertion, JUnit 4 provides Assert class with public static assert
methods to evaluate the test results. The assert methods provided by the
Assert class are similar to the TestCase's assert methods with the same
meaning and syntax.

Perform finalization operations
The TestCase class provides the tearDown() method, similar to the setUp()
method, and is called by JUnit after each test method is executed. The tearDown()
method's signature is as follows:

protected void tearDown();

With JUnit 3.8, you can override this method in test classes to perform finalization
operations, such as object clean up or releasing a resource such as a file. With JUnit 4
and later, you can simply mark a method with the @org.junit.After annotation to
act as tearDown() method.

Running JUnit tests
Almost all Integrated Development Environments (IDEs) are integrated with JUnit,
and you may easily use the IDE to run test cases. However, we never want to make
our development dependent on a particular product. Instead of using a particular
IDE, you can rely on JUnit itself for running the tests. JUnit provides the org.junit.
runner.JUnitCore class for running test cases. You can execute test cases through
the java command with the JUnitCore class as follows:

java org.junit.runner.JUnitCore TestClass1.class [TestClass2.class ...]

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 15

[391]

You can also use the JUnitCore class in application code, as follows:

org.junit.runner.JUnitCore.runClasses(TestClass1.class [,TestClass2.
class, ...]);

In practice, Ant and Maven are used to automatically run unit tests
as a part of the build process.

Integration testing data-access layer
When developing with Hibernate, we need to test whether the application's
data-access layer works properly. This involves testing the following:

Whether classes are persistent
Whether all classes' fields are persistent
Whether HQL expressions return valid results
Whether persistent operations are cascaded as they are configured in the
mapping definitions

Let's take the HibernateStudentDao class as a representation of the data-access layer
and see how test cases are implemented for this class. The following code shows the
StudentDao interface implemented by HibernateStudentDao:

package com.packtpub.springhibernate.ch15;

import java.util.Collection;

public interface StudentDao {
 public Collection getAllStudents();
 public Student getStudent(Long studentId);
 public Student saveStudent(Student student);
 public Student removeStudent(Student student);
 public Student updateStudent(Student student);
}

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Testing

[392]

We create the TestCaseHibernateStudentDao class as a test class for
HibernateStudentDao, and implement appropriate test methods. All we need to
do in the test methods is to verify that the DAO methods work properly when they
are invoked. For example, the saveStudent() method stores a newly instantiated
Student instance with all of its persistent properties. To do so, we can use a
HibernateStudentDao instance and a Hibernate Session object concurrently
to verify, for example, getAllStudents() returns all persistent students, and
getStudent() returns the persisted Student instance correctly with all of its
persistent fields. If we do this, we must provide a Session instance in the setUp()
method, and close the Session instance in the tearDown() method, as the start and
end of each test method's process. The following code shows the basic structure of
the test class:

package com.packtpub.springhibernate.ch15;

import junit.framework.TestCase;
import org.hibernate.Session;

public class TestCaseHibernateStudentDao extends TestCase {

 Session session;
 StudentDao dao;

 public void setUp() throws Exception {
 //a Hibernate Session and a HibernateStudentDao object are used
 //by all the test methods, so those object creation are
 performed here
 session = HibernateHelper.getSession();
 session.connection().setAutoCommit(true);
 dao = new HibernateStudentDao();
 }

 public void tearDown() throws Exception {
 //as the finalized step we need to close the Hibernate Session
 // instance to release the Session's resources
 if(session.isOpen())
 session.close();
 }
}

The tearDown() method checks whether the session is open before
closing it. This is reasonable. If we do not use the session in the test
method (for example, to start any transaction with the session), the
session remains closed.

Next, I'll explain how a test method is implemented for each method.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 15

[393]

Verify that the entity class is persistent
To test the saveStudent() method, we create a testSaveStudent() method in the
test class as follows:

public void testSaveStudent() {
 Student student = createADummyStudent();
 Student retStudent = dao.saveStudent(student);

 //the value returned by the DAO must be equal to
 //the original value
 assertEquals("The DAO's returned value of saving"+
 "must be equal to original",
 student, retStudent);

 //look inside the database through direct Hibernate
 //the session is auto-commit, so we are sure that the
 //transaction is committed, the session is flushed
 //after each operation
 Student actualStudent = (Student)session.get(Student.class,
 retStudent.getId());

 //the actual Student object in the database must be
 //equal to the original value
 assertEquals("Actual Student and DAO's returned "+
 "Student must be equal",
 student, actualStudent);
}

private Student createADummyStudent() {
 Student student = new Student();
 Calendar birthday = Calendar.getInstance();
 birthday.set(Calendar.YEAR, 1982);
 birthday.set(Calendar.MONTH, 3);
 birthday.set(Calendar.DAY_OF_MONTH, 21);
 student.setBirthdate(birthday.getTime());
 Calendar entranceTime = Calendar.getInstance();
 birthday.set(Calendar.YEAR, 2005);
 birthday.set(Calendar.MONTH, 7);
 birthday.set(Calendar.DAY_OF_MONTH, 1);
 student.setEntranceDate(entranceTime.getTime());
 student.setFirstName("John");
 student.setLastName("White");
 student.setSsn("121-21212-211");
 student.setStdNo("832423472");
 return student;
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Testing

[394]

As you can see, a Student instance is created and is stored via the DAO object.
The object returned by the DAO must be equal to the original object. The Session
instance uses the returned value to load the Student object from the database.
Loaded instances can be used to verify that the actual data in the database holds
the correct values for the Student instance.

In all test methods, we look at DAO classes as black boxes. It does not
matter whether a DAO class uses Hibernate or any other O/R mapping
technology. We test the DAO's functionality regardless of the technology
it uses.

Verify that all entity fields are persistent
To verify all properties are persistent, we can simply compare the original object with
the persistent object with the assertEquals()method. The testSaveStudent1()
shows how it can be done:

public void testSaveStudent() {
 Student student = createADummyStudent();
 Student retStudent = dao.saveStudent(student);

 assertNotNull(retStudent);

 //set the identifier to let the equals() method proceed.
 student.setId(retStudent.getId());

 //the returned value by the DAO must be equal to
 // the original value
 assertEquals("The DAO's returned value of saving" +
 " must be equal to original",
 student, retStudent);

 //look inside the database using Hibernate directly
 Student actualStudent =
 (Student)session.get(Student.class, retStudent.getId());

 //the actual Student object in the database must
 // be equal to the original value
 assertEquals("Actual Student and DAO's returned" +

 " Student must be equal",

 student, actualStudent);

}

The assertEquals() method uses the Student's equals() method to compare
two objects.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 15

[395]

Although you should test every behavior of the class, the setter and getter
methods commonly just assign and return the field values, so these are
easily tested. However, if these methods have side effects, or nontrivial
functionality, they should be tested.

If you are using a Hibernate Session in each test method to perform a distinct
persistent operation, it is a good idea to put the Session obtaining code in the
setUp() and close the Session in the tearDown() method. However, if the test
methods take the Session obtaining or the Session closing as a part of the test logic,
you cannot put obtaining and closing the Session instance generally in the setUp()
and tearDown() methods.

Verify that HQL works properly
While testing the data-access layer, you need to verify that HQL expressions load
persistent objects correctly. For instance, in our example you must verify that the
searchStudentsByFirstName() method takes a String parameter as the student's
first name, and retrieves all Student instances with the specified first name. The
testSearchStudentsByFirstName() method verifies this:

public void testSearchStudentsByFirstName(){
 Student student = createADummyStudent();
 dao.saveStudent(student);

 Collection students =
 dao.searchStudentsByFirstName(student.getFirstName());
 assertNotNull(allStudents);
 String hql = "from Student s where s.firstName like :firstName";
 Query query = session.createQuery(hql);
 query.setString("firstName", student.getFirstName());
 Collection actualStudents =
 query.list();
 assertEquals("All students should be the same",
 allStudents, actualStudents);

}

Verify cascading operation
Verifying the cascading operation is one of the important aspects. We want to make
sure when an object is stored if its association are persistent properly. With what
we have done so far, doing it is very easy and straightforward. We are just going
to test the save-update cascading operation. You will then be able to test all other
cascading operations.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Testing

[396]

Suppose the Student object is associated with an Address object, and their relation is
mapped with the save-update cascading operation. When a Student object with its
Address associated is stored, we expect both objects persisted properly:

public void testSaveStudent() {
 Student student = createADummyStudent();
 Address address = createADummyAddress();
 student.setAddress(address);

 Student retStudent = dao.saveStudent(student);

 //look inside the database through direct Hibernate
 //the session is auto-commit, so we are sure that the
 //transaction is committed, the session is flushed
 //after each operation
 Student actualStudent = (Student)session.get(Student.class,
 retStudent.getId());
 Address actualAddress = actualStudent.getAddress();
 assertNotNull(actualAddress);

 //set the identifier, to let the equals() method proceed.
 address.setId(actualAddress.getId());
 student.setId(actualStudent.getId());

 //the actual Student object in the database must be
 //equal to the original value
 assertEquals("Actual Student and DAO's returned "+
 "Student must be equal",
 student, actualStudent);
 assertEquals("Actual Address and DAO's returned "+
 "Address must be equal",
 address, actualAddress);

}

It is assumed that the Student's equals() method does not care about the equality
of the associated Address object. We have used an extra assertEquals() to verify, if
the persistent associated Address object is equal to the original Address object.

Testing Inversion of Control
One of Spring's benefits is that most of the objects managed by Spring are unaware
of the Spring framework API. This makes it easy to use Java code to create and wire
together an instance of the class being tested with its required dependencies.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 15

[397]

Look at the Spring context with two configured objects, as shown in the
following code:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
 2.5.xsd">
 <bean id="studentService"
 class="com.packtpub.springhibernate.ch15.StudentService">
 <property name="studentDao">
 <ref local="studentDao"/>
 </property>
 </bean>

 <bean id="studentDao"
 class="com.packtpub.springhibernate.ch15.HibernateStudentDao">
 </bean>
</beans>

The test class to initialize the Spring context and obtain a StudentService instance
is shown in the following code:

package com.packtpub.springhibernate.ch15;

import org.springframework.context.support.
ClassPathXmlApplicationContext;
import org.springframework.context.ApplicationContext;

import junit.framework.TestCase;

public class TestCaseStudentService extends TestCase {

 ApplicationContext ctx;

 public void setUp() throws Exception {
 ctx = new ClassPathXmlApplicationContext(
"com/packtpub/springhibernate/ch15/applicationContext.xml");
 }

 public void testStudentDaoInjection() throws Exception {
 StudentService ss =
 (StudentService) ctx.getBean("studentService");
 assertNotNull("StudentService should not be null", ss);
 assertNotNull("StudentDao should not be null",
 ss.getStudentDao());
 assertEquals(ss.getStudentDao().getClass(),
 HibernateStudentDao.class);
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Testing

[398]

Note that, we still need to implement typical test methods to verify the functionality
of StudentService methods.

Unit testing using mocks
With unit testing, as a rule, it is always necessary to test each object without relying
on other application's objects which need testing as well. However, in many
situations, the object being tested is tightly coupled with other objects. For example,
the object being tested uses other objects to do its job. In such cases, mock objects
help us to test the object conveniently without relying on other application's objects.
Mock objects are also used in situations where testing an object needs to create other
objects, such as connecting to a database, starting an application server, providing a
socket object, and so on, that are costly. Mock objects work similarly to real objects,
but we are sure about their operations and do not need to test them. This means that
we can be confident in using them, instead of real objects, to test a dependent object.

For instance, how can we ensure that StudentService always uses the StudentDao
instance, when there is no approach to look inside the StudentService class and
verify that the StudentDao instance is always used? In this case, we can create a
mock implementation of the StudentDao interface, and manually inject it into the
StudentService instance. Based on the objects returned by the mock StudentDao
implementation, we can determine whether StudentDao is used. The following code
shows this approach:

package com.packtpub.springhibernate.ch15;

import java.util.Calendar;
import java.util.Collection;
import java.util.ArrayList;

import org.hibernate.HibernateException;

import org.springframework.context.support.
ClassPathXmlApplicationContext;
import org.springframework.context.ApplicationContext;

import junit.framework.TestCase;

public class TestCaseStudentService1 extends TestCase {

 ApplicationContext ctx;
 StudentService ss;

 public void setUp() throws Exception {
 ctx = new ClassPathXmlApplicationContext(
 "com/packtpub/springhibernate/ch15/applicationContext.xml");

 ss = (StudentService) ctx.getBean("studentService");
 }

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 15

[399]

 public void testStudentDaoUsageWithMock() throws Exception {

 ss.setStudentDao(new mockHibernateStudentDao());

 //verify if StudentDao instance is called in
 //the getAllStudents() method
 Collection allStudents = ss.getAllStudents();
 assertNotNull(allStudents);
 assertEquals(allStudents.size(), 1);
 assertEquals(allStudents.toArray()[0],
 createADummyStudent());

 //verify if StudentDao instance is called in
 // the saveStudent() method
 Student student = createADummyStudent();
 Student retStudent = ss.saveStudent(student);
 assertSame(student, retStudent);

 //verify if StudentDao instance is called in
 // the removeStudent() method
 retStudent = ss.removeStudent(student);
 assertSame(student, retStudent);

 //verify if StudentDao instance is called in
 // the updateStudent() method
 retStudent = ss.updateStudent(student);
 assertSame(student, retStudent);
 }

 private Student createADummyStudent() {
 Student student = new Student();
 Calendar birthday = Calendar.getInstance();
 birthday.set(Calendar.YEAR, 1982);
 birthday.set(Calendar.MONTH, 3);
 birthday.set(Calendar.DAY_OF_MONTH, 21);
 student.setBirthdate(birthday.getTime());
 Calendar entranceTime = Calendar.getInstance();
 birthday.set(Calendar.YEAR, 2005);
 birthday.set(Calendar.MONTH, 7);
 birthday.set(Calendar.DAY_OF_MONTH, 1);
 student.setEntranceDate(entranceTime.getTime());
 student.setFirstName("John");
 student.setLastName("White");
 student.setSsn("121-21212-211");
 student.setStdNo("832423472");
 return student;
 }

 class mockHibernateStudentDao implements StudentDao {

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Testing

[400]

 public Collection getAllStudents() throws
 HibernateException {
 Student std = createADummyStudent();
 ArrayList list = new ArrayList();
 list.add(std);
 return list;
 }

 public Student getStudent(Long stdId) throws
 HibernateException {
 Student std = createADummyStudent();
 std.setId(stdId);
 return std;
 }

 public Student saveStudent(Student std) throws
 HibernateException {
 return std;
 }

 public Student removeStudent(Student std) throws
 HibernateException {
 return std;
 }

 public Student updateStudent(Student std) throws
 HibernateException {
 return std;
 }
 }

}

In this class, we simply created a mock implementation of the StudentDao interface.
Although, you can always use this approach to create mock objects, it is not
always as simple and straightforward as in the example. For instance, to create a
mock implementation of interfaces with many methods, you need to implement
all of the methods, even if you do not need them all. For example, when you are
developing a web application and dealing with the HttpServletRequest and
HttpServletResponse interfaces, it is not simple to create a concrete implementation
of these interfaces as mock classes. Fortunately, Spring includes some mock classes
for common interfaces, such as MockHttpSession, MockHttpServletRequest,
and MockHttpServletResponse as mock implementations of the HttpSession,
HttpServletRequest, HttpServletResponse interfaces, respectively.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 15

[401]

Additionally, you can use easy mock objects. EasyMock (http://www.easymock.
org) is a library for creating mock objects dynamically without implementing mock
classes. You specify the method, which the mock object should provide, and the
value that method should return when called. Then, you can use the object, which
acts similarly to the real object. These objects work in two modes: record mode and
replay mode. Record mode is the state in which the object records a method and the
return value it should provide. Record mode can switch to replay mode, in which the
object is ready to be used.

To use a mock object, follow these steps:

1. Create a mock object for the interface you want to simulate.
2. Record the expected behavior.
3. Switch the mock object to the replay state.

The following code shows the StudentServiceTest2 class, which uses mock objects
to test the StudentService class:

package com.packtpub.springhibernate.ch15;

import junit.framework.TestCase;
import org.easymock.EasyMock;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.
ClassPathXmlApplicationContext;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Collection;

public class TestCaseStudentService2 extends TestCase {
 StudentService ss;
 StudentDao dao;

 public void setUp() throws Exception {
 ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "com/packtpub/springhibernate/ch15/applicationContext.xml");
 ss = (StudentService) ctx.getBean("studentService");

 //create a mock object which represents
 // the StudentDao instance
 dao = EasyMock.createMock(StudentDao.class);
 }

 public void testStudentDaoUsageEasyMock() throws Exception {
 //create a dummy student
 Student student = createADummyStudent();
 Collection allStudents = new ArrayList();

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Testing

[402]

 allStudents.add(student);

 //the DAO instance is expected to return allStudents
 //when its getAllStudents() method is called

 EasyMock.expect(dao.getAllStudents()).andReturn(allStudents);

 //switch the mock object to the replay state
 EasyMock.replay(dao);
 ss.setStudentDao(dao);

 //verify our expectations when the StudentService is called
 Collection retStudents = ss.getAllStudents();

 assertNotNull("The returned collection of Students" +
 " are not null", retStudents);

 assertEquals("The returned collection has the " +
 "expected size", retStudents.size(), 1);

 assertSame("The returned collection has the expected value",
 retStudents.toArray()[0], student);

 //verify if the dao instance is called
 EasyMock.verify(dao);
 }

 private Student createADummyStudent() {
 Student student = new Student();
 Calendar birthday = Calendar.getInstance();
 birthday.set(Calendar.YEAR, 1982);
 birthday.set(Calendar.MONTH, 3);
 birthday.set(Calendar.DAY_OF_MONTH, 21);
 student.setBirthdate(birthday.getTime());
 Calendar entranceTime = Calendar.getInstance();
 birthday.set(Calendar.YEAR, 2005);
 birthday.set(Calendar.MONTH, 7);
 birthday.set(Calendar.DAY_OF_MONTH, 1);
 student.setEntranceDate(entranceTime.getTime());
 student.setFirstName("John");
 student.setLastName("White");
 student.setSsn("121-21212-211");
 student.setStdNo("832423472");
 return student;
 }
}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 15

[403]

In this example, we call the createMock() static method of the org.easymock.
EasyMock class to create a StudentDao mock object. We then register a method call
on the mock object, specify that the mock should return the test data, and feed the
mock object to the StudentService instance provided by the Spring IoC container.
Later, we can call EasyMock.verify() to ask the mock object to verify that the
method we registered was actually called.

Automating tests with Ant
Ant provides several tasks to run test classes from the build file and generate test
reports. To use these tasks, the junit.jar file must be in the Ant classpath (in the
ANT_HOME/lib directory) or in the application classpath (in the application's
lib directory).

The junit task is an Ant task that allows us to execute the test classes automatically
with the application's build process. Here is a typical usage of the junit task inside
the build.xml file, introduced in Chapter 2:

<target name="all-tests" depends="compile"
 description="Run All Test Cases">
 <javac destdir="${target.test-classes}" debug="true"
 classpathref="class.path">
 <src path="${test.java}"/>
 <classpath>
 <pathelement location="${target.classes}"/>
 </classpath>
 </javac>

 <copy todir="${target.test-classes}">
 <fileset dir="${test.etc}"/>
 </copy>

 <copy todir="${target.test-classes}">
 <fileset dir="${test.webapp}/WEB-INF"/>
 </copy>

 <junit printsummary="on">
 <classpath>
 <fileset dir="lib" includes="${lib}">
 <include name="**/*.jar"/>
 </fileset>
 <pathelement location="${target.classes}"/>
 <pathelement location="${target.test-classes}"/>
 </classpath>
 <formatter type="xml"/>
 <formatter type="plain"/>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Testing

[404]

 <batchtest todir="${target.test-reports}">
 <fileset dir="${test.java}">
 <include name="**/TestCase*.java"/>
 </fileset>
 </batchtest>
 </junit>

 <junitreport todir="${target.test-reports}">
 <fileset dir="${target.test-reports}">
 <include name="TEST-*.xml"/>
 </fileset>
 <report format="frames" todir="${target.test-reports}"/>
 </junitreport>
</target>

The junit and junitreport tasks run test cases and create a document to show the
test case's result, respectively. Here are short explanations for these tasks:

The <junit> element can be used with the optional printsummary attribute,
which determines whether to print one line statistics for each test case. The
nested <formatter> elements within the <junit> element lets you choose
different formats for the test result. The valid values, which are specified
through the type attribute of the <formatter> element, are plain, xml, and
brief. The xml prints the test results in XML format. plain and brief emit
plain text, but brief provides a shorter description for tests than plain does.
The nested <batchtest> element lets you select test cases based on
pattern matching.
junitreport lets you create a document to show test results. It merges the
individual XML files generated by the junit task, and applies a style sheet
to the result to produce browsable test-case results. The todir attribute
determines the location of the XML file aggregated from the results of all
tests. The nested <fileset> element lets you select individual XML files
generated by the junit task. The nested <report> element generates a
browsable report based on the document created by the merge.

For a more in-depth discussion about the junit and junitreport tasks, see the
JUnit documentation, or Pro Apache Ant by Matthew Moodie (Apress, 2005).

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Chapter 15

[405]

Summary
Unit testing, a critical part of application development, ensures that the
application works as expected. A good practice for unit testing is to execute
test classes automatically.

A test class is implemented for each Java class. Each test class includes the
required methods for testing an application class in isolation from other
application and test classes.

JUnit is a Java framework that simplifies test development. Using JUnit, you
can easily verify that the method invocation results match the expected values.
Extensions exist for the JUnit framework, such as Cactus, JMeter, DbUnit, HttpUnit,
and so on.

To implement a test class with JUnit 3.8 and before, you only need to create a
subclass of TestCase, and then implement the initialization process in the setUp()
method and the finalization process in the tearDown() method. Then, implement the
test methods, whose names begin with the test prefix. With JUnit 4 or later, you can
simply use any class as a test class. In the test class, any public method which doesn't
take any parameter and returns void can be marked with @Test to be a test method.
It is also possible to mark methods with the @Before and @After annotations to act
as setUp() and tearDown() methods.

JUnit automatically explores the test classes to find and run test methods.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Some of Hibernate's
Advanced Features

Throughout this book, you have learned essential information about Hibernate.
Hibernate is flexible enough to be used in any environment, providing advanced
features that are the subject of this appendix.

This appendix discusses the event/listener model that Hibernate implements. Using
this model, you can customize normal persistence behavior exposed by Hibernate.
We also look at filters, which let you work with a subset of persistent data. Finally,
we'll explore some useful Hibernate properties that you may need in advanced cases.

Hibernate's Event/Listener model
At times, you'll need to perform a task when a persistence operation is done.
Normally, you may change the persistence operation and insert the task's code
before or after the operation, based on your requirements. Although this solves
the problem, it may not suit your needs: the task may not be part of a persistence
operation, or it may be temporary. You want a method to add and remove the task
easily without changing the other code.

In Chapter 11, you learned how to create and apply an advice. Advice is useful
when you want to perform a different concern from the main concern. In addition
to implementing and using advice, Hibernate 3 provides an event/listener model
which is useful in such cases. Using this feature, you can create a listener class that
is notified when a particular persistence event occurs. You should then register the
listener programmatically with the Configuration instance that you use to build
SessionFactory. It is also possible to configure the listener declaratively in the
hibernate.cfg.xml file.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Some of Hibernate’s Advanced Features

[408]

Like the event/listener model common in the Java world, any listener is an instance
of a class that implements a particular interface. An event is also an instance of a
particular event class. The following table shows the listener interfaces, the events
that notify them, and the associated persistence operations that fire the events:

Listener Type of
Operation

Description

PreInsertEventListener pre-insert May be called by the Session.
save() and Session.
saveOrUpdate()methods before an
item is inserted into the database

PostInsertEventListener post-insert May be called by the Session.
save() and Session.
saveOrUpdate() methods after an
item is inserted into the database

PreUpdateEventListener pre-update May be called by the Session.
update() and Session.
saveOrUpdate() methods before an
item is inserted into the database

SaveOrUpdateEventListener save–
update

May be called by Session.save(),
Session.update(), or Session.
saveOrUpdate() when an item is
saved or updated

PostUpdateEventListener post-
update

May be called by the Session.
update() and Session.
saveOrUpdate() methods after an
item is inserted into the database

PreDeleteEventListener pre-delete Called by the Session.delete()
method before an item is removed from
the database

DeleteEventListener delete Called by the Session.delete()
method when an item is removed from
the database

PostDeleteEventListener post-delete Called by the Session.delete()
method after an item is removed from
the database

PreLoadEventListener pre-delete May be called by the Session.
load() or Session.get() method
before property values are injected into
a newly loaded entity instance

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Appendix

[409]

Listener Type of
Operation

Description

LoadEventListener load May be called by the Session.
load() or Session.get() method
when an instance is loaded into the
application, either from memory or
from the database

PostLoadEventListener post-load May be called by the Session.
load() or Session.get() method
after an instance is fully loaded into
memory

MergeEventListener merge Called by the Session.merge()
method

LockEventListener lock Called by the Session.lock()
method

AutoFlushEventListener auto-flush Called when the session is
automatically flushed

DirtyCheckEventListener dirty check Called when the session is checked
for dirty objects, particularly before
flushing the session

EvictEventListener evict Called by the Session.evict()
method

FlushEventListener flush Called by the Session.flush()
method

InitializeCollection
EventListener

load
collection

Called when a collection is initialized
before it is loaded from the database

RefreshEventListener refresh Called by the Session.refresh()
method

ReplicateEventListener replicate Called by the Session.
replicate() method

PersistEventListener persist Called by the Session.persist()
method

The org.hibernate.event package defines all listener interfaces and
event classes.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Some of Hibernate’s Advanced Features

[410]

To use any of the listeners listed in the table above, you must implement the
appropriate listener interface and override the required methods. You should then
apply the listener either declaratively, through the Hibernate configuration file, or
programmatically, via the Configuration object. The following code shows
an example:

package com.packtpub.springhibernate.appendix;

import org.hibernate.HibernateException;
import org.hibernate.event.SaveOrUpdateEvent;
import org.hibernate.event.SaveOrUpdateEventListener;

import org.apache.log4j.Level;
import org.apache.log4j.Logger;

public class SaveNewCourseListener implements
SaveOrUpdateEventListener {

 static Logger logger = Logger.getLogger(SaveNewCourseListener.
class);

 public void onSaveOrUpdate(SaveOrUpdateEvent event) throws
HibernateException {
 if (event.getObject() instanceof Course) {
 Course c = (Course) event.getObject();
 logSaveOrUpdate(c);
 }
 }
 private void logSaveOrUpdate (Course c) {
 // prepare the message
 String message = c + " is added.";
 logger.log(Level.INFO, message);
 }
}

In the previous table, you can see the SaveOrUpdateEventListener listener is called
when Session.save(), Session.update(), or Session.saveOrUpdate() is called.
This means onSaveOrUpdate() is called by these Session methods.

After all, you may apply the implemented listener declaratively in the Hibernate
configuration file as follows:

<hibernate-configuration>
 <session-factory>
 <listener type="save-update" class="com.packtpub.
springhibernate.appendix.SaveNewCourseListener"/>
 …
 </session-factory>
</hibernate-configuration>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Appendix

[411]

The <session-factory> element can nest with an arbitrary number of <listener>
elements. Each <listener> element identifies a particular listener with the type and
class attributes, which specify, respectively, the type of the listener and the class of
the listener.

Alternatively, you can apply the implemented interface programmatically to the
Configuration object as follows:

Configuration config = new Configuration();
config.setListener("save-update", new SaveNewCourseListener());

Interceptor
Hibernate provides full control of an object's states in its life cycle, allowing you
to define custom behaviors when the object's state changes. Hibernate can do this
thanks to interceptors and listeners. An interceptor is an old mechanism used by
Hibernate 2.x. Hibernate 3 introduced the event/listener model instead, but has not
removed support for interceptors. Although any interceptor lets you define custom
behaviors for all object states, listeners are used at a particular state of an object. To
define an interceptor, first implement the Interceptor interface and override the
appropriate methods, and then apply it to the Configuration or Session object.
Notice that the implemented interceptor cannot be declared declaratively through
either the configuration file or the mapping files. Here are some methods of the org.
hibernate.Interceptor interface:

afterTransactionBegin(): Is called after the transaction is started
via calling of Session.beginTransaction() This is called if Spring
manages transactions.
beforeTransactionCompletion(): Is called before a transaction is
completed, but not before rollback. This method can be used to roll back
the transaction.
afterTransactionCompletion(): Is called after the transaction is
committed or rolled back.
instantiate(): Is always called when the Session needs to create a new
instance of the persistent class. This method is useful when the persistent
class does not have a default constructor and Hibernate does not know
how to instantiate the persistent class. If the persistent class does not
have a constructor, create and return an instance of the persistent class,
otherwise return null.

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Some of Hibernate’s Advanced Features

[412]

onSave(): Is called before a persistent instance is saved. You may use this
method to change the persistent instance's state. If you want to change the
state of the persistent instance before the instance is saved, return true,
otherwise return false.
onDelete(): Is called before a persistent instance is removed.
onLoad(): Is called immediately before a persistent instance is initialized
from the database.
getEntity(): Is called by the Session object to look up the second-level
cache when a persistent instance is not found in the Session's own cache.
getEntityName(): Is called by the Session to determine a persistent
object's name.
isTransient(): Is called by the Session to determine whether the instance
being saved is a transient instance.
preFlush(): Is called immediately before Session.flush() is called.
onFlushDirty(): Is called when the session is flushed after the persistent
instance is identified as dirty.
findDirty(): Is called when Session.flush() is called. This method
returns an array of int, which indicates that the indices of the dirty
properties have changed and need to update, or it returns null when
no property needs to update. This method may be used to change the
persistent instance's state. To change the instance's state return true,
otherwise return false.
postFlush(): Is called after a flush.

Hibernate provides a default implementation class for the Interceptor
interface, called org.hibernate.EmptyInterceptor. This default
avoids implementing unnecessary methods when you do not actually
need them.

Let's look at a simple example to see how to implement a Hibernate interceptor.

Suppose we want the application to log every student's result when the system
administrator enters exam results (passed, failed, or conditional) into the system.
The results are then stored in the database. Because printing the results and storing
the objects are clearly distinct concerns, we may prefer to use an interceptor to
implement the reporting rule. The following code shows an interceptor class in
which the onSave() and afterTransactionCompletion() methods have been
implemented. Notice that the onSave() method holds all of the entities saved in
a HashSet object. After the transaction has been committed, all held objects are
retrieved from the HashSet and an appropriate form printed for each:

•

•

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Appendix

[413]

package com.packtpub.springhibernate.appendix;

import org.hibernate.CallbackException;
import org.hibernate.Transaction;
import org.hibernate.type.Type;
import org.hibernate.EmptyInterceptor;

import java.io.Serializable;
import java.util.Collection;
import java.util.HashSet;
import java.util.Iterator;

import org.apache.log4j.Level;
import org.apache.log4j.Logger;

public class CourseSavingInterceptor extends EmptyInterceptor {

 static Logger logger = Logger.getLogger(CourseSavingInterceptor.
class);
 public CourseSavingInterceptor() {
 }

 private ThreadLocal<Collection> stored =
 new ThreadLocal<Collection>();

 public void afterTransactionBegin(Transaction tx) {
 stored.set(new HashSet());
 }

 public void afterTransactionCompletion(Transaction tx) {
 if (tx.wasCommitted()) {
 Iterator i =
 ((Collection) stored.get()).iterator();
 while (i.hasNext()) {
 Course c = (Course) i.next();
 logCompletion (c);
 }
 }
 stored.set(null);
 }

 public boolean onSave(Object entity,
 Serializable id,
 Object[] state,
 String[] propertyNames,
 Type[] types)
 throws CallbackException {

 stored.get().add(entity);
 return false;
 }
 private void logCompletion (Course c) {
 // prepare the message
 String message = c + " is added.";
 logger.log(Level.INFO, message); }

}

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Some of Hibernate’s Advanced Features

[414]

After an interceptor has been implemented, it should either be applied to
the Configuration or a Session object. Notice that when it applies to the
Configuration object, it means that the interceptor should be applied to the
persisting objects of all entity classes. In contrast, when the interceptor applies
to a Session object, it only applies to the persisting objects that are persisted by
that session.

In our example, we are only concerned with Student objects, so we apply the
implemented interceptor only to the Session object that is specifically used to
save Student objects:

Course course = …//new instantiated course
CourseSavingInterceptor interceptor = new CourseSavingInterceptor();
Configuration cfg = new Configuration();
cfg.configure();
SessionFactory sf = cfg.buildSessionFactory();
Session session = sf.openSession(interceptor);
Transaction tx = session.beginTransaction();
session.save(course); // Triggers onSave() of the Interceptor
tx.commit();
session.close();

Spring AOP can do the same work. Typically, Spring AOP is preferred
because it allows you to do all of your work declaratively.

Alternatively, the interceptor may be applied to the Configuration object. This
means that the interceptor will be applied to all of the Session:

new Configuration().setInterceptor(new CourseSavingInterceptor());

Filters
There are situations where you may want to work with a subset of objects, instead
of the entire set of objects. In such situations, you may implement appropriate
HQL expressions to load the desired objects. This is not a good practice, because
you always need to call HQL expressions to load the objects. In our example of an
education system application, suppose a requirement indicates that the application
must be implemented so that we can configure it to view and use the information
for only current students, only those students who have graduated, or only those
students older than a specified age.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Appendix

[415]

Hibernate allows us to filter the returned objects at the Session level. To use filters,
follow these three steps:

1. Define a filter: This step includes filter definition in the mapping files
through the <filter-def> elements.

2. Apply the filter: This step includes using the <filter> element inside of the
mapping definitions to refer to the defined filter.

3. Enable the filter and set up parameters: You do this by invoking the
enableFilter() method of Session, which returns an object of
org.hibernate.Filter used for setting up the filter's parameters.
You must specify the filter's runtime criteria restrictions.

The sections that follow elaborate on these steps.

Defining a filter
Hibernate filters are defined through <filter-def> elements inside the mapping
files. This element assigns a name to the filter. After that time, the filter is referred
to by that name. The <filter-def> element comes with an arbitrary number
of <filter-param> elements, which specify the filter's parameter names. Each
<filter-param> element comes with name and type attributes, which specify
the name and the type of each parameter, respectively. The following snippet
shows a filter definition:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class ...
 </class>

 <filter-def name="statusFilter">

 <filter-param name="status" type="boolean"/>
 </filter-def>

</hibernate-mapping>

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Some of Hibernate’s Advanced Features

[416]

Applying the filter
In the second step, apply the defined filter to the target class or classes through the
mapping definition. For this purpose, you need to insert the <filter> element
inside the <class> element, and refer back to the defined filter using its name and
parameters. The <filter> element comes with two attributes, name and condition,
which specify, respectively, the filter being used and the restrictions the filter uses.
The following snippet shows how to do this step:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
 <class …

 <filter name="statusFilter" condition=":status=studentStatus"/>

 </class>

 <filter-def name="statusFilter">
 <filter-param name="status" type="boolean"/>
 </filter-def>

</hibernate-mapping>

Enabling the filter and setting up parameters
Although you have called a filter in the mapping of a persistent class, the filter
will not be applied unless it is enabled programmatically. To use the filter, you
must enable it and pass the parameters' values. The Session interface provides the
enableFilter() method, which takes the filter name as a String argument, and
returns an object of type org.hibernate.Filter to be used as a reference to set
the parameters:

org.hibernate.Filter enableFilter(String filterName)

The org.hibernate.Filter interface provides the following methods for setting up
parameter values:

org.hibernate.Filter setParameter(String paramName,
 Object paramValue)
org.hibernate.Filter setParameterList(String paramName,
 Collection paramValues)
org.hibernate.Filter setParameterList(String paramName,
 Object[] paramValues)

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Appendix

[417]

The first setParameter() methods set paramValue for a given parameter, with the
name paramName. Two other methods are used for setting parameter values using an
IN clause.

The following snippet shows how the filter defined in the previous examples is
applied to Student objects:

Filter f = session.enableFilter("statusFilter");
f.setParameter("status", Boolean.TRUE);
List results = session.createQuery("from Student").list();

More on Hibernate configuration
Although database properties, dialect, and mapping files are the most important
parts of a Hibernate configuration file, Hibernate's configuration properties include
far more than what you have seen so far. This section discusses some of these
configuration properties.

JDBC properties
These properties relate directly to the java.sql.Connection and
java.sql.Statement objects, which Hibernate uses behind the scenes
to interact with the database:

hibernate.jdbc.fetch_size: This property specifies the number of
database rows that are buffered with every fetch. Using this property
can improve performance when the application retrieves many rows.
The optimized value can be achieved by balancing memory usage and
network traffic. To use this property, the database driver must support
this functionality. The default value depends on the java.sql.Statement
implementation used by the database driver. However, you can set the
desired value by calling Statement.setFetchSize().
hibernate.jdbc.batch_size: This property determines the maximum
batch size for updates. When the session is flushed, modified objects are
synchronized with the database through a JDBC batch. Configure this
property with the maximum batch updates that may potentially occur:
the recommended values are between 5 and 30.
hibernate.jdbc.batch_versioned_data: If the used JDBC driver
has been properly implemented, and returns the correct row count for
executeBatch(), true is used for this option. Hibernate uses the return
value of this method to check whether a batch update was successful. The
default value is false.

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Some of Hibernate’s Advanced Features

[418]

hibernate.jdbc.use_scrollable_resultset: This property determines
whether Hibernate uses the JDBC2 scrollable resultsets for a user-provided
JDBC. This property is only necessary when you are using user-supplied
JDBC connections. Otherwise, Hibernate uses connection metadata.
hibernate.jdbc.use_streams_for_binary: This property specifies
whether the binary data or Serializable types are read or written over
JDBC as streams.
hibernate.jdbc.use_get_generated_keys: This allows Hibernate to use
natively generated keys after SQL INSERT statements if the JDBC driver
supports JDBC3 autogenerated key feature. Set it to false if your driver
has problems with the Hibernate identifier generators. If this property is
not specified, Hibernate tries to determine the driver capabilities by using
connection metadata.
hibernate.connection.provider_class: This indicates a class that
implements the org.hibernate.connection.ConnectionProvider
interface and provides java.sql.Connection objects for Hibernate. Use
this option if you want to provide Connection objects in a specific way.
hibernate.connection.isolation: This determines the transaction
isolation level that JDBC connections use in Hibernate. The valid values
have been defined as static members in java.sql.Connection. The default
isolation level of the DBMS is usually read as committed or repeatable read.
It can change either on the application side (through this property) or on the
database side (through database configuration). Not all databases support all
isolation levels. Look at Chapter 12 for more details.
hibernate.connection.autocommit: This property turns autocommit
behavior on or off for JDBC connections. Autocommit is disabled by default.
hibernate.connection.<propertyName>: This configures the
propertyName of the JDBC connection used by Hibernate.
hibernate.jndi.<propertyName>: This passes the property propertyName
to the JNDI InitialContextFactorys. Use this option when Hibernate uses
a container-managed data source.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Appendix

[419]

Hibernate properties
This section describes properties directly related to Hibernate. Use these
configuration settings to optimize Hibernate's performance:

hibernate.show_sql: This property enables or disables the printing of all
SQL executed by Hibernate to the console. This option can be a problem in a
high transactional system, so it is useful only in the development time, and
not deployment. The right approach to monitor SQL is to enable SQL-logging
of Hibernate, as you will see in the coming section.
hibernate.default_schema: This specifies the default database schema for
which Hibernate generates unqualified table names in the generated SQL.
hibernate.session_factory_name: This binds the Hibernate
SessionFactory to a JNDI node when Configuration.
buildSessionFactory() is called. It then lets you access the
SessionFactory object by looking up the bound SessionFactory object
anywhere in the application.
hibernate.max_fetch_depth: This property determines the maximum
depth size to which Hibernate will go when fetching the outer-join fetch tree.
By default, no limit is set. The recommended values are between 1 and 5. A
value of 0 disables join fetching.
hibernate.default_batch_fetch_size: This sets a default size for
Hibernate batch fetching of associations. The recommended values
are 4, 8, 16.
hibernate.order_updates: This property forces Hibernate to order SQL
updates by the primary key value of the items being updated, resulting in
fewer transaction deadlocks in highly concurrent systems.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Some of Hibernate’s Advanced Features

[420]

hibernate.generate_statistics: Hibernate can be configured to collect
statistics about the persistent operations that are performed. These statistics
are useful for performance tuning. Typical information includes flush count,
delete count, insert count, query execution count, second-level cache look
up counts, and so on. hibernate.generate_statistics indicates whether
Hibernate collects these statistics. The collected statistics, represented
as an object of org.hibernate.stat.Statistics, can be obtained
programmatically by the SessionFactory's getStatistics() method. It
is also possible to publish these statistics through a JMX MBean whether the
Hibernate application is a standalone application or a JEE application. For
information about how to use JMX with Hibernate statistics, look at
https://www.hibernate.org/216.html. The following code shows
an example of how to obtain these statistics:
Configuration cfg = new Configuration();

cfg.configure();

SessionFactory sf = cfg.buildSessionFactory();

Statistics stats =sf.getStatistics();

stats.setStatisticsEnabled(true);

stats.getSessionOpenCount();

stats.logSummary();//logs main statistics in the log file

long flushcount = stats.getFlushCount();

long deletecount = stats.getEntityDeleteCount();

long insertcount = stats.getEntityInsertCount();

long queryCount = stats.getQueryExecutionCount();

long lookupCacheCount = stats.getSecondLevelCacheHitCount();

hibernate.use_sql_comments: This property causes Hibernate to put
comments inside all SQL statements executed by Hibernate, which may help
in debugging code. You can also set a custom comment for query expressions
through the setComment() method for all of the org.hibernate.Query,
org.hibernate.SQLQuery, org.hibernate.Criteria instances, as follows:

Query query = session.createQuery("from Student");

query.setComment("HQL-Select All Students: ");

SQLQuery sqlQuery = session.createSQLQuery("SELECT * FROM
STUDENT");

sqlQuery.setComment("SQL-Select All Students: ");

Criteria criteria = session.createCriteria(Student.class);

criteria.setComment("Criteria-Select All Students: ");

This option is useful for tracking Hibernate-generated SQL for optimization.

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Appendix

[421]

Cache properties
The properties described in this section relate to second-level cache configuration:

hibernate.cache.provider_class: This specifies the second-level cache
provider for Hibernate by determining the name of a class that implements
the org.hibernate.cache.CacheProvider interface.
hibernate.cache.use_minimal_puts: This property enhances
second-level cache performance by forcing Hibernate to add an item to
the cache, only after ensuring that the item isn't already cached. This
option is helpful when you're using cluster cache providers and writing
to the cache is more expensive than reading.
hibernate.cache.use_query_cache: This property triggers Hibernate
to cache each query result in queries for which caching is enabled
programmatically through the setCacheable(true) method, as follows:
Query query = session.createQuery("from Student");

query.setCacheable(true);

SQLQuery sqlQuery = session.createSQLQuery("SELECT * FROM
STUDENT");

sqlQuery.setCacheable(true);

Criteria criteria = session.createCriteria(Student.class);

criteria.setCacheable(true);
Note that no query result is cached by default.

hibernate.cache.use_second_level_cache: This enables or disables
second-level cache service. Using false for this property disables all other
cache-related settings.
hibernate.cache.region_prefix: Use this property when the
application works with multiple databases, and therefore with multiple
SessionFactorys. Because a persistent instance may belong to different
databases, you must refer to each instance with a prefix. This property
specifies a region-name prefix for a particular SessionFactory. For instance,
with the prefix db1, Student objects are cached in an area of the cache named
db1.com.packtpub.springhibernate.appendix.Student.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Some of Hibernate’s Advanced Features

[422]

Transaction properties
This section describes configuration settings for transaction management:

hibernate.transaction.factory_class: This setting determines if an
implementation of org.hibernate.transaction.TransactionFactory
is used by Hibernate to obtain Transaction objects. The default value is
org.hibernate.transaction.JDBCTransactionFactory, used for the
transaction API in Java SE and in direct JDBC.
jta.UserTransaction: This determines a JNDI name that points to a
javax.transaction.UserTransaction object, held by the application
server, and looked up by JTATransactionFactory.
hibernate.transaction.manager_lookup_class: This property
specifies a class which implements the org.hibernate.transaction.
TransactionManagerLookup interface. Hibernate uses this class to find the
JTA implementation on which the application deploys.
hibernate.transaction.flush_before_completion: This determines
whether the session is automatically flushed before the transaction is
complete. If set to true, the property makes flushing part of the transaction
manager's internal synchronization procedure.
hibernate.transaction.auto_close_session: This determines whether
the session is automatically closed after the transaction is complete. If set to
true, the property makes session closing part of the transaction manager's
internal synchronization procedure.

Logging configuration in Hibernate
To provide logging, Hibernate uses SLF4J (http://www.slf4j.org) as the logging
framework. SLF4J does not provide a logging alternative to Log4j, the Java logging
API, or to any other. Instead, it is an API that sits on top of these other APIs to
provide you with a common logging API to use in the source code. It forwards all
logging events to either a logging framework, such as Log4j, the Java logging API,
JCL, or so on. For each supported logging framework, SLF4J provides a JAR file,
called SLF4J Binding, that must be in the application classpath when that framework
is used as the underlying logging framework. For instance, SLF4J provides
slf4j-log4j12.jar for Log4j that must be in the classpath when SLF4J is used
with Log4j. Note that to use Log4j, you must put log4j.properties, the Log4j
configuration file, in the root of the application classpath.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Appendix

[423]

The following table shows Hibernate's categories for log messages:

Category Function
org.hibernate.SQL Log all SQL DML statements when they are

executed
org.hibernate.type Log all JDBC parameters
org.hibernate.tool.hbm2ddl Log all SQL DDL statements as they are executed
org.hibernate.cache Log all second-level cache activity
org.hibernate.transaction Log transaction-related activity
org.hibernate.jdbc Log all JDBC resource acquisitions
org.hibernate.secure Log all JAAS authorization requests
org.hibernate Log everything (a lot of information, but very

useful for troubleshooting)

The practical approach to monitor the generated SQL is using the
debug level for the category org.hibernate.SQL. Do not enable
the hibernate.show_sql property in the production system.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Index
Symbols
<aop pointcut> element 308
<bag> element

about 118
using 118, 119

<bean> elements 240
<class> element 45

about 90
abstract attribute 91
attributes 91
dynamic-insert attribute 92
dynamic-update attribute 91
lazy attribute 91
name attribute 91
polymorphism attribute 92
select-before-update attribute 91
table attribute 91
where attribute 91

<generator> element 46, 93
<hibernate-mapping> element 45
<hibernate-mapping> root element

about 89
attributes 90
auto-import attribute 90
default-access attribute 90
default-cascade attribute 90
default-lazy attribute 90
package attribute 90

<id> element 46
<generator> element 93
about 92
attributes 92
column attribute 92
name attribute 92
type attribute 92

unsaved-value attribute 93
<idbag> element 119, 120
<idref> element 253
<list> element 120, 254
<lookup-method> element 247
<many-to-many> element

about 144
attributes 145

<many-to-one> element
about 134-136
attributes 134

<map> element
about 122, 254
using 122

<null> element 254
<one-to-many> element

about 137
attributes 137, 138
mapping 139
one-to-many relationship, mapping with

other collections 140
<one-to-one> element

about 128
attributes 129
bidirectional 128
foreign key one-to-one 132, 133
identical primary keys, using 129-132
unidirectional 128

<property> element 46
about 95
attributes 95
column attribute 95
formula attribute 96
generated attribute 95
insert attribute 96
lazy attribute 95

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[426]

name attribute 95
not-null attribute 95
optimistic-lock attribute 95
type attribute 95
unique attribute 95
update attribute 96

<property> elements 251
<props> element 254
<ref> element

about 252
bean attribute 253
local attribute 253
parent attribute 253

<return-scalar> element 215
<session-factory> element 411
<set> element

about 116, 254
attributes 116, 117
cascade attribute 117
inverse attribute 117
lazy attribute 117
name attribute 116
order-by attribute 117
sort attribute 117
table attribute 116

<value> element 253
== operator 10
@Autowired annotation 258
@Basic annotation 101
@Column annotation 102
@Entity annotation 99
@GeneratedValue annotation 100, 101
@Id annotation 100, 101
@Lob annotation 101
@Required annotation 258
@Resource annotation 259
@Transient annotation 101

A
abstract attribute 91
AbstractCommandController 379, 380
AbstractController 378
accessor methods 86
ACID properties

about 319
atomicity 319

consistency 319
durability 319
isolation 319

add() method 218
addAdvice() method 302
addAdvisor() method 302
addInterface() method 302
addJoin() method 214
addMethodName() method 296
addScalar() method 212
advice, Spring 2.x AOP

advice parameters 313
after advice 312
after returning advice 310
after throwing advice 311
around advice 312
before advice 310
defining 309

advice, Spring AOP framework
about 287
types 287

advice parameters, Spring 2.x AOP 313
advice types, Spring AOP framework

about 288
after returning advice 291
around advice 289
before advice 290
throws advice 292

advisor, Spring AOP framework 300
after advice, Spring 2.x AOP

about 306, 312
defining 312

afterReturning() method 291
after returning advice, Spring 2.x AOP

about 310, 311
defining 310

after returning advice, Spring AOP
framework 291, 292

afterThrowing() method 293
after throwing advice, Spring 2.x AOP

about 311
defining 311

afterTransactionBegin() method 411
afterTransactionCompletion() method 411,

412
aggregate functions

about 206

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[427]

avg() 206
count() 206
max() 206
min() 206
sum() 206

and() method 223
annotation-based container configuration

about 257
classpath, scanning for annotated classes

259, 260
enabling 257

annotation mapping
creating 96-99

annotations, for bean configuration
@Autowired annotation 258
@Required annotation 258
@Resource annotation 259

Ant
about 36
tests, automating with 403

AOP
about 271
advantages 26
cross-cutting concerns, implementing

278-280
introducing 272
notification concern, implementing 284-287
terminology 275

AOP alliance 288
AOP components

assembling 303, 304
AOP development

process 277
steps 277

AOP framework 276
AOP framework, Spring

about 287
advice 287
advisor 300
components, assembling 303, 304
pointcuts 294
proxy, configuring 301
proxy, creating 301

AOP terms
advice 275
advised object 276
advisors 276

interceptors 276
joinpoints 276
pointcuts 276
proxy 276
target object 276

application
HSQLDB database, setting up 30
preparing, to use Spring with Hibernate 29
project hierarchy, setting up 34

ApplicationContext 261, 263
application contexts

ApplicationContext 263
ClassPathXmlApplicationContext 263
FileSystemXmlApplicationContext 263
WebApplicationContext 263

applyBeanPropertyValues() method 262
around advice, Spring 2.x AOP

about 312
defining 312, 313

around advice, Spring AOP framework
289, 290

about 289, 290
as clause 203
Aspect-Oriented Programming. See AOP
AspectJ language

about 309
rules 309

aspects 26
aspects, Spring 2.x AOP

defining 308
assemble() method 158
assertion methods, JUnit

assertEquals() 389
assertNotNull() 389
assertNull() 389
assertTrue() 389
fail() 389

assigned, ID generators 94
auto-import attribute 90
autowire attribute

about 256
setting 256
values 256

autowire attribute, values
autodetect 256
byName 256
byType 256

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[428]

constructor 256
no 256

autowireBeanProperties() method 262
AutowireCapableBeanFactory 262
autowiring

about 255
example 257

B
basic configuration settings, Hibernate

configuration properties 66
hibernate.connection.driver_class 66
hibernate.connection.password 66
hibernate.connection.url 66
hibernate.connection.username 66
hibernate.dialect 66

bean attribute 253
bean configuration

about 247
annotations, used 257
beans, wiring 251
singleton, versus prototype beans 250
XML approach 247-249

bean factories
about 262
AutowireCapableBeanFactory 262
BeanFactory 262
HierarchicalBeanFactory 262
ListableBeanFactory 262

BeanNameUrlHandlerMapping 376
BeanNameViewResolver 382
beans.xml configuration file 246
bean wiring 251
before() method 290
before advice, Spring 2.x AOP

about 310
defining 310

before advice, Spring AOP framework
290, 291

beforeTransactionCompletion() method 411
beginTransaction() method 171
buildSessionFactory() method 419

C
cache

about 338

Ehcache 339
Hashtable 339
JBoss TreeCache 339
OSCache 339
SwarmCache 339

cache mode
about 340
get 340
ignore 340
normal 340
put 340
refresh 340

cache properties
about 421
hibernate.cache.provider_class 421
hibernate.cache.region_prefix 421
hibernate.cache.use_minimal_puts 421
hibernate.cache.use_query_cache 421
hibernate.cache.use_second_level_cache

421
caching

about 20, 337, 338
first-level cache 338
second-level cache 338

CancellableFormController 381
cascade operation 19
cascading operation

about 187
address class 189
address class, mapping definition 190
address class, mapping metadata 190
all 187
cascade= 192, 193
course class 190
defining 188
delete 187
delete-orphan 187
example 188-191
none 187
save-update 187
student class 188
student class, mapping definition 191

ClassEditor 267
ClassPathXmlApplicationContext 263
clear() method 196
client class 243
close() method 171

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[429]

CollectionOfElements annotation 123
collections

<bag> element 118
<idbag> element 119
<list> element 120
<map> element 122
<set> element 116
Java collection type 115
mapping 114

commit() method 171
component element 155
CompositeUserType interface

about 161-163
methods 164

concern 272
concerns 26
configuration files, Hibernate architecture

24
configuration properties, Hibernate

about 66
hibernate.connection.datasource 66
hibernate.connection.password 66
hibernate.connection.username 66
hibernate.dialect 66
hibernate.jndi.<JNDIpropertyname> 66
hibernate.jndi.class 66
hibernate.jndi.url 66

configure() method 73
conjunction() method 224
constructor-arg> elements 252
constructor injection 241-244
contains() method 196
containsBean() method 262
containsBeanDefinition() method 262
containsLocalBean() method 262
ControllerClassNameHandlerMapping 376
controller components 373
controllers

about 377
AbstractCommandController 377
AbstractController 377
CancellableFormController 377
MultiActionController 377
ParameterizableViewController 377
ServletForwardingController 377
ServletWrappingController 377
SimpleFormController 377

UrlFilenameViewController 377
count() function 206
create() method 226
createCriteria() method 217
createQuery() method 202
createSQLQuery() method 212
Criteria API

about 217
features 217
QBE 225
simple Criteria, using 217

Criteria interface 218
Criteria query

creating 217
cross-cutting concerns

about 272
examples 272
implementing, with AOP 278-280
implementing, with OOP 273, 275

custom types, Hibernate
about 152
CompositeUserType interface 161
UserType interface 153
uses 152, 153

D
DAO classes

refactoring 350-356
DAO functionality , Spring

DAO implementations 362
transaction advice 362

data-access layer
cascading operation, verifying 395, 396
entity class, verifying 393
entity fields, verifying 394
HQL expressions load persistent objects,

verifying 395
testing 391, 392

data access abstraction, Spring 26
Data Access Object pattern 344
Database Manager 32
database tables, Hibernate application

creating, HSQL Database Manager used 43
DataSourceTransactionManager 328
data tier

implementing, with Hibernate 345-348

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[430]

implementing, with Spring 349
DBMS 7
declarative configuration, Hibernate

about 71
properties file, using 71, 72
XML file, using 72, 73

declarative transaction demarcation 321
deepCopy() method 158
default-access attribute 90
default-cascade attribute 90
default-lazy attribute 90
delete() method 182
dependency injection 234
detached objects 168
dirty sessions 181
disassemble() method 158
discriminator column 104
disjunction() method 224
Doctype element 89
Domain Specific Languages. See DSLs
DTD-based configuration 248
dynamic-insert attribute 92
dynamic-update attribute 91
dynamic matcher pointcut 298, 299

E
Ehcache 339
EJB 22
EmailNotifier 237
enableFilter() method 415, 416
enableLike() method 226
Enterprise JavaBeans. See EJB
entities 17
entity classes 81
eq() method 219
equals() method 10, 159, 174

about 87
implementing 87

evict() method 196
excludeNone() method 226
excludeProperty() method 226
excludeZeros() method 226
executeBatch() method 417
executeUpdate() method 211
explicit polymorphism 110

F
factory bean

about 264
JndiObjectFactoryBean 267
LocalSessionFactoryBean 267
ProxyFactoryBean 267
TransactionProxyFactoryBean 267

factory class, Spring
about 328
hibernate. LocalSessionFactoryBean 328
hibernate3.LocalSessionFactoryBean 328
jdo.LocalPersistenceManagerFactoryBean

328
jpa. LocalEntityManagerFactoryBean 328
toplink.LocalSessionFactoryBean 328

features, Spring 2.x AOP
AspectJ integration support 305
bean name pointcut element support 305
easier AOP configuration 305

FileEditor 267
FileSystemXmlApplicationContext 263
filters, Hibernate

about 414
applying 416
defining 415
enabling 416
parameters, setting up 416, 417

filter tag 415
find() method 195
findDirty() method 412
firstName property 86
flush() method 171, 181, 196, 412
FlushMode class 181
foreign, ID generators 94
formula attribute 96
from clause 202
front controller 375
front controller servlet 373

G
ge() method 222
get() method 175
getBean() method 241
getBean() methods

containsBean() 262
getType() 262

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[431]

isSingleton() 262
getBeanDefinitionCount() method 262
getBeanDefinitionNames() method 262
getBeanNamesForType() method 262
getBeansOfType() method 262
getClass() method 194
getClassWithoutInitializingProxy() method

194
getEntity() method 412
getEntityName() method 412
getFirstName() method 86
getIdentifier() method 196
getNotifier() method 246
getParentBeanFactory() method 262
getPropertyNames() method 164
getPropertyTypes() method 164
getPropertyValue() method 164
getProxy() method 302
getReference() method 195
getServletContext() method 263
getStatistics() method 420
getter method 42, 86
getType() method 262
getXxx method 86
global transactions 320
global transactions, Spirng 363-366
group by clause 210
guid, ID generators 94

H
handler mappings

about 375
BeanNameUrlHandlerMapping 376
ControllerClassNameHandlerMapping 376
SimpleUrlHandlerMapping 376

hashCode() method 10, 159
about 87
implementing 87

Hashtable 339
hiberdb 33
Hibernate

about 7
application, starting from scratch 40
architecture 23
as O/R Mapping solution 20
basic configuration settings 65

configuration properties 417
configuring 69
configuring, in Spring context 356-360
data-access layer, testing 391, 392
event/listener model 407
features 407
filters 414
interceptor 411
logging configuration 422
persistence service 169
persistent objects 167
POJOs requisites 85
querying approaches 199
with Spring 64

Hibernate, as O/R Mapping solutions
about 21
built-in cache strategies 21
EJB 22
Hibernate, vs other fraeworks 23
HQL 22
iBatis SQL Map 22
Java Data Objects 22
other O/R Mapping solutions 22
pluggable cache strategies 21
SQL dialect 22
TopLink 22

Hibernate-Generated SQL
logging 229

hibernate-mapping tag 194
Hibernate.cfg.xml file

about 51
properties 52

Hibernate application
database tables, creating 40-43
database tables, designing 40
mapping metadata, creating 40, 44, 45
persistent classes, designing 40-42
persistent classes, implementing 40-42
simple client 47
simple student class 47, 48
starting from scratch 40

Hibernate architecture
about 23
configuration files 24
mapping definitions 24
persistent objects 24
XML documents 24

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[432]

Hibernate built-in types
about 150, 151
type attribute 151

Hibernate configuration
declarative configuration 71
Hibernate mappings 69
Hibernate properties 69
programmatic configuration 69
settings 69

Hibernate configuration properties
about 417
cache properties 421
Hibernate properties 419
JDBC properties 417
transaction properties 422

Hibernate Core package
downloading 34

Hibernate declarative configuration
about 51
database-relevant information 51
Hibernate.cfg.xml file 51
objects, mappings 51

Hibernate dialect 67
Hibernate properties

about 419
hibernate.default_batch_fetch_size 419
hibernate.default_schema 419
hibernate.generate_statistics 420
hibernate.max_fetch_depth 419
hibernate.order_updates 419
hibernate.session_factory_name 419
hibernate.show_sql 419
hibernate.use_sql_comments 420

Hibernate Query Language. See HQL
HibernateStudentDao class 391
Hibernate Transaction API 320
HibernateTransactionManager 328
Hibernate transaction manager

using 329, 330
Hibernate types

about 149
built-in types 150
custom types 152

HierarchicalBeanFactory 262
hilo, ID generators 94
history class 154
HistoryType class 155-157

HQL
about 22, 201
aggregate functions 206
as clause 203
bulk deletes 211
bulk updates 211
from clause 202
group by clause 210
join clause 203
named parameters 209
order by clause 210
positional parameters 208
select clause 205
where clause 207

HSQLDB database
about 29, 30
configuring 30
downloading 30
Hibernate Core package, downloading 34
installing 30
managing 32, 33
running 30
server.database 31
server.dbname 31
server modes 31
setting up 30
Spring distribution version, downloading

34
HSQLDB database server modes

about 31
Hsqldb server 31
Hsqldb servlet 31
Hsqldb web server 31
in-process (stand-alone) mode 31
memory-only databases 31

Hsqldb server 31
Hsqldb servlet 31
Hsqldb web server

about 31
shutting down 32

I
iBatis SQL Map 22
identity, ID generators 93
ID generators

about 93

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[433]

assigned 94
foriegn 94
guid 94
hilo 94
identity 93
increment 93
native 93
select 94
seqhilo 94
sequence 93
uuid 94

ignoreCase() method 226
ilike() method 220
implicit polymorphism 109
in-process (stand-alone) mode 31
increment, ID generators 93
index attribute 244
inheritance hierarchy, mapping

about 102
implicit polymorphism,vs explicit

polymorphism 109
one table, using for class hierarchy 104
one table, using for each concrete class 103
one table, using per suclass 107
ways 102

instantiate() method 411
interceptor, Hibernate

about 411
implementing 412-414
methods 411

InternalResourceViewResolver 382
Inversion of Control. See IoC
IoC

about 25, 231
activities 231
advantages 25
applying 236
applying, to Hibernate resources 263-266
testing 396, 397
types 238, 239

IOC, applying
object instantiation, removing 60
setter method, implementing 60, 61
Student instance, obtaining from Spring 63
student object, configuring 61, 62

IoC, in Spring
about 234

annotation-based container configuration
257

application, defining 234
ApplicationContext, implementing 261
autowiring 255
bean configuration 247, 250
BeanFactory, implementing 261
format forms, for bean configuration 260
IoC, applying 236
non-IoC-style code, implementing 234-236

IoC, with dependency injection
about 232
dependency push, versus dependency pull

232, 233
isDirty() method 181, 196
isMutable() method 158
isNotNull() method 220
isNull() method 220
isolation level, transaction attributes

about 322
isOpen() method 171, 196
isSingleton() method 262
isTransient() method 412

J
J2EE 22
Java

transaction API 319
transactions, managing 319

Java collection type
about 115
java.util.Collection 115
java.util.List 115
java.util.Map 116
java.util.Set 115
java.util.SortedMap 116
java.util.SortedSet 116

Java Data Objects (JDO) 22
Java Transaction API. See JTA
JBoss TreeCache 339
JDBC 7
JDBC properties

about 417
hibernate.connection.<propertyName> 418
hibernate.connection.autocommit 418
hibernate.connection.isolation 418

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[434]

hibernate.connection.provider_class 418
hibernate.jdbc.batch_size 417
hibernate.jdbc.batch_versioned_data 417
hibernate.jdbc.fetch_size 417
hibernate.jdbc.use_get_generated_keys 418
hibernate.jdbc.use_scrollable_resultset 418
hibernate.jdbc.use_streams_for_binary 418
hibernate.jndi.<propertyName> 418

JDBC Transaction API 319
JdoTransactionManager 328
join clause

about 203
cross join 204
full join 204
inner join 204
left outer join 204
right outer join 204
types 204

JPA configuration
about 76, 77
subelements 76

JpaTransactionManager 328
JTA 27, 320
JTA transaction manager

using 330, 331
JtaTransactionManager 328
JUnit

about 387
assertion methods 389
benefits 387
test class 387
test class structure 387

junitreport task 404
junit task 403, 404
JUnit tests

running 390

L
lazy attribute 91
lazy loading 20
lazy loading, persistent objects 194, 195
list() method 202, 218
ListableBeanFactory 262
listener interfaces

AutoFlushEventListener 409
DeleteEventListener 408

DirtyCheckEventListener 409
EvictEventListener 409
FlushEventListener 409
InitializeCollectionEventListener 409
LoadEventListener 409
LockEventListener 409
MergeEventListener 409
PersistEventListener 409
PostDeleteEventListener 408
PostInsertEventListener 408
PostLoadEventListener 409
PostUpdateEventListener 408
PreDeleteEventListener 408
PreInsertEventListener 408
PreLoadEventListener 408
PreUpdateEventListener 408
RefreshEventListener 409
ReplicateEventListener 409
SaveOrUpdateEventListener 408

listener tag 411
load() method 175
local attribute 253
LocaleEditor 267
local transactions

about 320
local transactions, Spring transaction

management 361
lock() method 180
Log4j 422
logging configuration, Hibernate

about 422
log messages categories 423

M
many-to-many relationship

about 145
mapping 145-148

mappedBy attribute 148
mapping collections, with annotations

about 123
order-by attribute, using to order collection

elements 127
sorted maps 124-126
sorted sets 124-126

mapping components 111

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[435]

mapping issues
about 53
caching 53
querying objects 54

mapping metadata, Hibernate application
creating 44, 46

matches() method 298
MatchMode class 221
Maven 36
memory-only databases 31
merge() method 181, 182
metadata, in annotations

@Basic annotation 101
@Column annotation 102
@Entity annotation 99
@GeneratedValue annotation 100, 101
@Id annotation 100, 101
@Lob annotation 101
@Table annotation 99
@Transient annotation 101
about 96

metadata , in XML
<class> element 90
<hibernate-mapping> root element 89, 90
<id> element 92
<property> element 95
about 88, 89
Doctype element 89

method injection
about 245-247
object dependencies, configuring 239, 240

mismatch issue, persistence management
about 9
complicated objects, mapping 17
eliminating 10
example 11-14
identity and equality mismatch 9
many-to-many association, mapping 18, 19
object inheritance mismatch, mapping 15,

16, 17
mock objetcs

about 398
using 401

ModelAndView object 381
model components 373
MVC architectural pattern

about 372

MVC components 372
MVC components

about 372
controller components 373
model components 373
view components 373

MVC web framework, Spring 27

N
name attribute, <class> element 91
name attribute, <id> element 92
named parameters 209
named queries

about 214
benefits 214

named SQL or HQL queries 214
name matched pointcut 296
native, ID generators 93
native SQL queries 212
ne() method 219
not() method 223
notification concern

implementing, with AOP 284-287
implementing, with OOP 281-283

NotificationService
implementing 238

notifier
implementing 237

notifier interface 237
nullSafeGet() method 159
nullSafeSet() method 159

O
O/R Mapping. See ORM
Object-Oriented Programming. See OOP
object/relational mapping metadata

about 87, 88
metadata, in annotations 96
metadata, in XML 88

object identifier 11
object mapping 81
Object Relationship Mapping. See ORM
objects associations

<many-to-many> element 144
<many-to-one> element 134
<one-to-many> element 137

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[436]

<one-to-one> element 128
mapping 128

onDelete() method 412
one-to-many relationship

collection of entity types, mapping with
<idbag> 142

java.util.Map of entity types, mapping 143,
144

list of entity types, mapping 143
mapping, with other collections 140
set of entity types, mapping 141

one table for class hierarchy approach
about 104
advantages 105, 106

one table for each concrete class approach
about 103
advantages 104
disadvantages 103

one table per subclass approach
about 107
advantages 107, 108
disadvantages 109

onFlushDirty() method 412
onLoad() method 412
onSave() method 412
OOP

about 271
cross-cutting concerns, implementing 273,

275
limitations, cross-cutting concerns 275
notification concern, implementing 281-283

or() method 223
order by clause 210
ORM 20
ORM frameworks 20
OSCache 339

P
package attribute 90
parent attribute 253
persist() method 196
persistence management, in Java

about 8
mismatch issue 9

persistence service
process 170, 171

session interface 169
persistent classes, Hibernate application

designing 41, 42
implementing 41, 42

persistent entity classes
about 82-84
POJO programming model 82

persistent objects
about 167, 168
deleting 182-184
detached objects 168
dirty sessions, checking for 181
lazy loading 194, 195
life cycle 167
loading 175-177
object equality 174
object identity 174
persistent objects 168
refreshing 178, 179
removed objects 169
replicating 184-186
storing 172, 173
transient objects 168
updating 179, 180
updating, merge() method used 182

persistent objects, Hibernate architecture 24
person class 15
Plain Old Java Object. See POJOs
pointcuts, Spring 2.x AOP

defining 308
pointcuts, Spring AOP framework

about 294
composition 300
dynamic 294
examples 294
static 294

POJO 42 7
POJOs 82
POJOs requisites

accessors 86
equals() method, implementing 87
hashCode() method, implementing 87
nonfinal classes, defining 87
zero-argument constructor 85

polymorphism attribute 92
positional parameters

about 208

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[437]

versus, named parameters 208
postFlush() method 412
preFlush() method 412
PreparedStatment 14
primary key 11
proceed() method 290
programmatic configuration, Hibernate

69-71
programmatic transaction demarcation 321
project hierarchy

Ant and Maven projects, setting up 36
build.xml file 35
lib subdirectory 35
out subdirectory 35
pom.xml file 35
required libraries, putting to lib directory

35
setting up 34
src subdirectory 35
test subdirectory 35

propagation behaviors, transaction
attributes 322

properties, Hibernate.cfg.xml file
connection.autocommit 52
connection.driver_class 52
connection.password 52
connection.url 52
connection.username 52
dialect 52
pool_size 52
show_sql 52

PropertiesEditor 267
PropertyEditors

about 267
ClassEditor 267
example 268, 269
FileEditor 267
LocaleEditor 267
PropertiesEditor 267
StringArrayPropertyEditor 267
URLEditor 267

proxy 175
proxy configuration, AOP

about 301
proxy factory types 301

ProxyFactory
about 302

methods 302
using 302

ProxyFactoryBean
about 302
properties 302
using 302

proxy factory types
about 301
AbstractAutoProxyCreator 301
ProxyFactory 301
ProxyFactoryBean 301
TransactionProxyFactoryBean 301

Q
QBE

about 225
methods 226

Query By Example. See QBE
querying approaches, Hibernate

Criteria API 200
HQL 199
Native SQL 199
QBE 200

query result
paging 227

R
refresh() method 179
registerTime property 179
regular expression pointcuts 297
relational database

about 8
advantages 8
support, providing to 8

remove() method 184
removed objects 169
replace() method 159
replicate() method 184
ReplicationMode class 185
Restrictions class

comparison restrictions 222
conjunctions 224
disjunctions 224
equality restrictions 219
likeness restrictions 220
logical restrictions 223

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[438]

null and empty restrictions 220
size restrictions 224
SQL restrictions 225
static methods 218

returnedClass() method 158
rules, AspectJ language

annotations 309
class selector 309
method selector 309
package selector 309
pointcut compositors 309
pointcut designators 309
visibility selectors 309

S
save() method 172
saveStudent() method 387
school class 153
select, ID generators 94
select-before-update attribute 91
select clause 205
seqhilo, ID generators

about 94
sequence, ID generators 93
server.database 31
server.dbname 31
Service Façade Pattern 344
Session API

about 200
uses 169

SessionFactory class
getStatistics() method 420

session methods
about 196
clear() method 196
contains() method 196
evict() method 196
flush() method 196
getIdentifier() method 196
isDirty() method 196
isOpen() method 196
persist() method 196

session object 169
setCacheable() method 421
setComment() method 420
setDate() method 208

setEntity() method 209
setExcludedPattern() method 297
setExcludedPatterns() method 297
setFetchSize() method 417
setFirstName() method 86
setFirstResult() method 227
setInteger() method 208
setLocale() method 208
setMappedName() method 296
setMappedNames() method 296
setMaxResults() method 227
setParameter() method 208, 417
setParameterList() method 417
setPattern() method 297
setPatterns() method 297
setPropertyValue() method 164
setString() method 208
setTarget() method 302
setter and getter pointcut 295
SetterInfoConsolePrinter class 55
SetterInfoDBPrinter class 55
SetterInfoLogPrinter class 55
setter injection 239
setter method 42, 86
setTimestamp() method 208
setXxx method 86
simple case, Spring

SetterInfoConsolePrinter class 55
SetterInfoDBPrinter class 55
SetterInfoLogPrinter class 55

simple client, Hibernate application
Hibernate, configuring 48
operation, performing 50
session object, obtaining 49
transaction, committing/rolling back 50
transaction, starting 49

SimpleFormController 380, 381
SimpleUrlHandlerMapping 376
single instance of SessionFactory

using 74, 75
singleton 250
sizeXx() method 224
SLF4J 422
SMSNotifier class 238
Spring

about 7, 25
AOP framework 26, 287

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[439]

AOP framework, advantages 26
ApplicationContext 261
DAO classes 350
data access abstraction 26
Data Access Object pattern 344
IOC, applying 60
IoC container 25
lightweight framework 25
maintenance problems 59
MVC web framework 27
Service Façade Pattern 344
simple case 55-59
stereotype annotations 259
testing support 27
transaction abstraction 27
transaction management 326
using, in web applications 370
with Hibernate 64

Spring 2.x AOP
about 305
advantages 305
advice, defining 309
after advice 306
AOP configuration, with AOP schema 306,

307
aspects, defining 308
features 305
pointcuts, defining 308

Spring distribution version
downloading 34

Spring exception hierarchy
about 349
defining 349

Spring integration
configuration 370-372

Spring MVC architecture
controllers 374
front controller 374
handler mappings 374
view resolvers 374
views 374

Spring MVC web framework
about 374
AbstractController 378
controllers 377
front controller 375

handler mappings 375
model and view object 381
result, rendering through JSP 383
Spring MVC workflow 374
view resolvers 382

Spring MVC workflow 374
Spring pointcut

about 294
composition 300
dynamic matcher pointcut 295
name matched pointcut 294
regular expression pointcut 294
setter and getter pointcut 294
static matcher pointcut 295

Spring transaction abstraction 326
Spring Transaction Abstraction API 320
Spring transaction configuration 331
Spring transaction management

about 360, 361
global transactions 363
Hibernate transaction manager 361
JTA transaction manager 361
local transactions 361

SQL 7
SQL dialect 22
sqlTypes() method 158
static matcher pointcut 298
stereotype annotations

@component annotation 259
@controller annotation 259
@Repository annotation 259
@Service annotation 259
about 259

StringArrayPropertyEditor 267
subelements, JPA configuration

class 77
exclude-unlisted-classes 77
jar-file 77
jta-data-source 76
name 76
non jta-data-source 76
properties 77
provider 76
transaction-type 76

SwarmCache 339

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[440]

T
table attribute 91
target method 291
Teacher class 193
tearDown() method 392
Template Pattern 348
test case

about 386
setUp() method 388

test class structure, JUnit
about 387
finalization operations, performing 390
preconditions, setting up 388
test methods, calling 388

testing support, Spring 27
testSaveStudent() method 387
throws advice, Spring AOP framework 292,

293
TopLink 22
TopLinkTransactionManager 328
transaction 317, 318
transaction abstraction , Spring 27
transaction APIs, Java

about 319
Hibernate Transaction API 320
JDBC Transaction API 319
JTA 320
Spring Transaction Abstraction API 320

transaction attributes
about 322
isolation level 322
propagation behavior 322
read-only 322
timeout 322

transaction configuration
in, Spring 1.x 331
in, Spring 2.x 335, 336

transaction configuration, Spring 331
transaction configuration, Spring 1.x

about 331, 332
autoproxy, creating 333
proxy configuration 333
transactionProxyFactoryBean, using 334,

335
transaction configuration, Spring 2.x

 <tx advice> element 336

<tx annotation-driven> element 336
<tx attributes> element 336
<tx method> element 336
about 335
elements 336
 spring-tx.xsd element 336

transaction demarcation
about 321
declarative transaction demarcation 321
programmatic transaction demarcation 321

transaction essentials
about 318
global transactions 320
local transactions 320
transaction, managing in Java 319
transaction attributes 322
transaction demarcation 321

transaction management
activities 317
application reactions, determining 317
transactons, configuring 317

transaction management, Spring
about 326, 327
calling object 327
data source 327
transactional object 327
transaction interceptor 327
transaction manager 327
transaction proxy 327

transaction manager
about 320

transaction manager, Spring
DataSourceTransactionManager 328
HibernateTransactionManager 328
JdoTransactionManager 328
JpaTransactionManager 328
JtaTransactionManager 328
TopLinkTransactionManager 328

transaction properties
about 422
hibernate.transaction.auto_close_session

422
hibernate.transaction.factory_class 422
hibernate.transaction.flush_before_comple-

tion 422
hibernate.transaction.manager_lookup_

class 422

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

[441]

jta.UserTransaction 422
transactions, Hibernate applications

about 323, 324
JTA, using 325, 326

transient objects 168
transparent 81
type attribute 151
types, IoC

constructor injection 238
method injection 238
setter injection 238

U
uniqueResult() method 228
unit test

about 386
automating, with Ant 403

unit testing
about 386
data-access layer, testing 391
IoC, testing 396
JUnit, using 387
mocks, using 398-402

update() method 179
URLEditor 267
UserType interface

about 153
history class 154
methods 158
school class 153

uuid, ID generators 94

V
values 17
view components 373
view resolvers

about 382
BeanNameViewResolver 382
InternalResourceViewResolver 382

W
WebApplicationContext 263
where attribute 91
where clause

about 207
collection-valued taken functions 207
comparison operators 207
grouping operators 207
JPA standardized functions 207
logical operators 207
mathematical operators 207
scalar database-supported functions 207
time and date functions 207

writeMessage() method 312

X
XML documents, Hibernate architecture 24

Z
zero-argument constructor 85

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Thank you for buying
Spring Persistence with
Hibernate

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Spring Persistence with Hibernate, Packt will have given
some of the money received to the Spring project and Hibernate project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

Spring 2.5
Aspect-Oriented Programming
ISBN: 978-1-847194-02-2 Paperback: 332 pages

Create dynamic, feature-rich, and robust enterprise
applications using the Spring framework

1. Master Aspect-Oriented Programming and its
solutions to implementation issues in Object-
Oriented Programming

2. A practical, hands-on book for Java developers
rich with code, clear explanations, and
interesting examples

3. Includes Domain-Driven Design and Test-
Driven Development of an example online shop
using AOP in a three-tier Spring application

Spring Web Flow 2
Web Development
ISBN: 978-1-847195-42-5 Paperback: 272 pages

Master Spring’s well-designed web frameworks to
develop powerful web applications

1. Design, develop, and test your web applications
using the Spring Web Flow 2 framework

2. Enhance your web applications with
progressive AJAX, Spring security integration,
and Spring Faces

3. Stay up-to-date with the latest version of Spring
Web Flow

4. Walk through the creation of a bug tracker
web application with clear explanations

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Alison Voyvodich on 4th December 2009

12593 80th Avenue N, , Seminole, , 33776

Download at WoweBook.Com

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	Table of Contents
	Preface
	Chapter 1: An Introduction to Hibernate and Spring
	Persistence management in Java
	The mismatch problem
	Identity and equality mismatch
	Mapping object inheritance mismatch
	Mapping more complicated objects

	Object relational mapping
	Hibernate as an O/R Mapping solution
	Other O/R Mapping solutions
	Hibernate versus other frameworks

	Hibernate architecture
	What is Spring?
	Inversion of Control container
	Aspect-oriented programming framework
	Data access abstraction
	Transaction abstraction
	MVC web framework
	Testing support

	Summary

	Chapter 2: Preparing an Application to Use Spring with Hibernate
	Setting up the database
	Getting and installing HSQLDB
	Configuring and running HSQLDB
	HSQLDB server modes
	Managing HSQLDB

	Getting a Hibernate distribution
	Getting a Spring distribution

	Setting up the project hierarchy
	Put the required libraries in the lib directory
	Setting up Ant or Maven in the project

	Summary

	Chapter 3: A Quick Tour of Hibernate and Spring
	Getting started with Hibernate
	Designing and implementing persistent classes
	Creating Database Tables
	Creating mapping metadata
	A simple client
	Configuring Hibernate
	Obtaining a session object
	Starting a transaction
	Performing the operation
	Committing/rolling back the transaction

	Hibernate declarative configuration
	Some issues in mapping
	Caching
	Querying objects

	Getting started with Spring
	A simple case
	Applying IoC
	Remove object instantiation and implement the setter method
	Configure the Student object
	Obtain the Student instance from Spring

	Hibernate with Spring
	Summary

	Chapter 4: Hibernate Configuration
	Basic configuration information
	Hibernate dialect
	Configuring Hibernate
	Programmatic configuration
	Declarative configuration
	Using a properties file
	Using an XML file

	Using a single instance of SessionFactory
	JPA configuration
	Summary

	Chapter 5: Hibernate Mappings
	Persistent entity classes
	Having a zero-argument constructor (mandatory)
	Providing accessors to access class properties (optional)
	Defining nonfinal classes (optional)
	Implementing equals() and hashCode() (optional)

	Object/relational mapping metadata
	Metadata in XML
	Doctype
	The <hibernate-mapping> root element
	The <class> element
	The <id> element
	The <property> element

	Metadata in annotations
	@Entity
	@Table
	@Id and @GeneratedValue
	@Basic
	@Lob
	@Transient
	@Column

	Mapping inheritance hierarchy
	One table for each concrete class
	One table for class hierarchy
	One table per subclass
	Implicit polymorphism versus explicit polymorphism

	Summary

	Chapter 6: More on Mappings
	Mapping components
	Mapping collections
	The <set> element
	The <bag> element
	The <idbag> element
	The <list> element
	The <map> element

	Mapping collections with annotations
	Sorted sets and sorted maps
	Using the order-by attribute to order collection elements

	Mapping object associations
	The <one-to-one> element
	Using identical primary keys
	Foreign key one-to-one

	The <many-to-one> element
	The <one-to-many> element
	Mapping a one-to-many relationship with other collections

	The <many-to-many> element
	Summary

	Chapter 7: Hibernate Types
	Built-in types
	Custom types
	UserType
	CompositeUserType

	Summary

	Chapter 8: Hibernate Persistence Behavior
	The life cycle of persistent objects
	Transient objects
	Persistent objects
	Detached objects
	Removed objects

	Persistence with Hibernate
	The process of persistence
	Storing objects
	Object equality and identity
	Loading objects
	Refreshing objects
	Updating objects
	Checking for dirty Sessions
	Using the merge() method

	Deleting objects
	Replicating objects

	Cascading operations
	An example cascading operation
	Using cascade="save-update"
	Using cascade="none"
	Using cascade="delete"
	Using cascade="delete-orphan"

	Lazy loading
	Some useful Session methods
	Summary

	Chapter 9: Querying In Hibernate
	The Session API and querying
	HQL
	The from clause
	The as clause
	Query an object's associations
	The select clause
	HQL's aggregate functions
	The where clause
	Positional versus named parameters
	The order by and group by clauses

	Bulk updates and bulk deletes with HQL
	Queries in native SQL
	Named SQL and HQL queries
	Using the Criteria API
	Using a simple Criteria
	Looking at the Restrictions class's factory methods
	Equality restrictions
	Null and empty restrictions
	Likeness restrictions
	Comparison restrictions
	Logical restrictions
	Size restrictions
	Disjunctions and conjunctions
	SQL restrictions

	Query By Example (QBE)

	Paging the query result
	Logging the Hibernate-Generated SQL
	Summary

	Chapter 10: Inversion of Control with Spring
	Inversion of Control and dependency injection
	Dependency push versus dependency pull
	Dependency injection

	Inversion of Control in Spring
	Application definition
	Implementing non-IoC-style code
	Applying IoC
	Setter injection
	Constructor injection
	Method injection

	Bean configuration
	Singleton versus prototype beans
	Wiring beans

	Automatic wiring
	Annotation-based container configuration
	@Required
	@Autowired
	@Resource
	Classpath scanning for annotated classes

	Other format forms for bean definition
	BeanFactory and ApplicationContext

	Applying IoC to Hibernate resources
	PropertyEditors
	Summary

	Chapter 11: Spring AOP
	Introduction to AOP
	Implementing cross-cutting concerns with OOP
	AOP terminology
	Implementing cross-cutting concerns with AOP

	Using Spring AOP with Spring IoC: An example
	Implementing the notification concern with OOP
	Implementing notification concern with AOP

	Spring's AOP framework
	Advice
	Around advice
	Before advice
	After returning advice
	Throws advice

	Pointcuts
	Setter and getter pointcut
	Name matched pointcut
	Regular expression pointcuts
	Static matcher pointcut
	Dynamic Matcher Pointcut
	Pointcut composition

	Advisor
	Proxy configuration and creation
	Using ProxyFactory
	Using ProxyFactoryBean

	Assembling the AOP components

	Moving to Spring 2.x's AOP
	AOP configuration with the AOP schema
	Defining aspects
	Defining pointcuts
	Defining an advice
	Before advice
	After returning advice
	After throwing advice
	After advice
	Around advice
	Advice parameters

	Summary

	Chapter 12: Transaction Management
	Transaction essentials
	Managing transactions in Java
	Local versus global transactions
	Transaction demarcation
	Programmatic transaction demarcation
	Declarative transaction demarcation

	Transaction attributes

	Transactions in Hibernate applications
	Using JTA in Hibernate applications

	Spring transaction abstraction
	How Spring manages transactions
	The choice of transaction manager
	Using the Hibernate transaction manager
	Using the JTA transaction manager

	Spring transaction configuration
	Transaction configuration in Spring 1.x
	Transaction configuration in Spring 2.x

	Caching
	Summary

	Chapter 13: Integrating Hibernate with Spring
	The Data Access Object pattern
	Service Facade Pattern
	Data tier implementation with Hibernate
	Data tier implementation with Spring
	Spring exception translation
	Refactoring DAO classes to use Spring
	Configuring Hibernate in a Spring context
	Spring transaction management
	Local transactions
	Global transactions

	Summary

	Chapter 14: Web Development with Hibernate and Spring
	Problem definition
	Common configuration for Spring integration

	The MVC architectural pattern
	Spring MVC web framework
	Spring MVC workflow
	Front controller
	Handler mappings
	BeanNameUrlHandlerMapping
	ControllerClassNameHandlerMapping
	SimpleUrlHandlerMapping

	Controllers
	AbstractController
	AbstractCommandController
	SimpleFormController
	CancellableFormController

	Model and View
	View resolvers
	InternalResourceViewResolver
	BeanNameViewResolver

	Render the result through JSP

	Summary

	Chapter 15: Testing
	An introduction to unit testing
	Unit testing with JUnit
	The structure of test classes with JUnit
	Setting up the preconditions
	Call the method being tested and verify the result
	Perform finalization operations

	Running JUnit tests

	Integration testing data-access layer
	Verify that the entity class is persistent
	Verify that all entity fields are persistent
	Verify that HQL works properly
	Verify cascading operation

	Testing Inversion of Control
	Unit testing using mocks
	Automating tests with Ant
	Summary

	Appendix: Some Hibernate's Advanced Features
	Hibernate's Event/Listener model
	Interceptor
	Filters
	Defining a filter
	Applying the filter
	Enabling the filter and setting up parameters

	More on Hibernate configuration
	JDBC properties
	Hibernate properties
	Cache properties
	Transaction properties

	Logging configuration in Hibernate

	Index

