
Java Persistence/ Print version 1

Java Persistence/ Print version

A book relating to the Java programming language.

Contents
1. Preface
2. What is Java persistence?

1. What is Java?
2. What is a database?
3. What is JPA?
4. What is new in JPA 2.0?
5. Other Persistence Specs
6. Why use JPA or ORM?

3. Persistence Products, Which to Use?
1. EclipseLink (Eclipse)
2. TopLink (Oracle)
3. Hibernate (RedHat)
4. TopLink Essentials (Glassfish)
5. Kodo (Oracle)
6. Open JPA (Apache)
7. Ebean (SourceForge)

4. Mapping, Round Pegs into Square Holes
1. Tables
2. Identity, Primary Keys and Sequencing
3. Inheritance
4. Embeddables (Aggregates, Composite or Component Objects)
5. Locking and Concurrency
6. Basic Attributes
7. Relationships

1. OneToOne
2. ManyToOne
3. OneToMany
4. ManyToMany

http://en.wikibooks.org/w/index.php?title=File:Java-persistence.PNG

Java Persistence/ Print version 2

5. Embedded
8. Advanced Mappings

1. ElementCollection (Embeddable Collections, Basic Collections)
2. Variable Relationships

9. Advanced Topics
1. Views
2. #Stored Procedures/
3. #Structured Object-Relational Data Types/
4. #XML Data Types/
5. #Filters/
6. #History/
7. #Logical Deletes/
8. #Auditing/
9. #Replication/

5. Runtime, Doing the Hokey Pokey (EntityManager)
1. Querying

1. JPQL
2. Persisting (Inserting, Updating, Merging)
3. Transactions
4. Caching
5. EJB
6. Security (User Authentication, Proxy Connections, VPD)
7. #Servlets and JSPs/
8. #Spring/
9. #WebServices/

6. #Packaging and Deploying/
1. #Java EE/

1. Oracle Weblogic
2. IBM Websphere
3. Redhat JBoss

2. #Spring/
3. #Tomcat/

7. #Clustering/
8. Databases

1. Oracle
2. PostgreSQL
3. MySQL
4. DB2
5. SQL Server

9. Debugging
10. Performance
11. Tools

1. Eclipse JPA (Dali)
2. TopLink Mapping Workbench

12. Testing

Java Persistence/ Print version 3

Preface

What is this book about?
This book is meant to cover Java persistence, that is, storing stuff in the Java
programming language to a persistent storage medium. Specifically using the Java

Persistence API (JPA) to store Java objects to relational databases, but I would like it to
have a somewhat wider scope than just JPA and concentrate more on general persistence
patterns and use cases, after all JPA is just the newest of many failed Java persistence
standards, this book should be able to evolve beyond JPA when it is replaced by the next
persistence standard. I do not want this to be just a regurgitation of the JPA Spec, nor a
User Manual to using one of the JPA products, but more focused on real-world use cases of
users and applications trying to make use of JPA (or other Java persistence solution) and
the patterns they evolved and pitfalls they made.

Intended Audience
This book is intended to be useful for or to anyone learning to, or developing Java
applications that require persisting data to a database. It is mainly intended for

Java developers intending to persist Java objects through the Java Persistence API (JPA)
standard to a relational database. Please don't just read this book, if you're learning or
developing with JPA please contribute your experiences to this book.

Style
This book is meant to be written in a casual manner. The goal is avoid sounding
dry, overly technical, or impersonal. The book should sound casual, like a

co-worker explaining to you how to use something, or a fellow consultant relating their
latest engagement to another. Please refrain for being overly critical of any product,
ranting about bugs, or marketing your own product or services.

Authors
Everyone is encouraged to participate in the ongoing development of this book.
You do not need to be a Java persistence superstar to contribute, many times the

best advice/information for other users comes from first time users who have not yet been
conditioned to think something that may be confusing is obvious.
List of authors: (please contribute and sign your name)
James Sutherland : Currently working on Oracle TopLink and Eclipse EclipseLink, over 12
years of experience in object persistence and ORM.
Doug Clarke : Oracle TopLink and Eclipse EclipseLink, over 10 years of experience in the
object persistence industry.

http://en.wikibooks.org/w/index.php?title=File:Vraagteken.svg
http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_app_Community_Help.png
http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_app_kcoloredit.png
http://en.wikibooks.org/w/index.php?title=File:Litchar.png
http://en.wikibooks.org/w/index.php?title=User:Jamesssss
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/TopLink
http://en.wikipedia.org/wiki/Eclipse_Foundation
http://en.wikipedia.org/wiki/EclipseLink
http://en.wikibooks.org/w/index.php?title=User:Djclarke
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/TopLink
http://en.wikipedia.org/wiki/Eclipse_Foundation
http://en.wikipedia.org/wiki/EclipseLink

Java Persistence/ Print version 4

What is Java persistence?
Java persistence could be defined as storing anything to any persistence store in the Java
programming language. Obviously this would be too broad of a concept for a single book, so
this book is more focused on storing Java objects to relational databases. In particular using
the Java Persistence API (JPA).
There are many ways to persist data in Java, to name a few, JDBC, serialization, file IO, JCA,
object databases, or XML databases. However the majority of data in general is persisted in
databases, specifically relational databases. Most things that you do on a computer or web
site that involve storing data, involve accessing a relational database. Relational databases
are the standard persistence store for most corporations from banking to industrial.
There are many things that can be stored in databases from Java. Java data includes
strings, numbers, dates and byte arrays, images, XML and Java objects. Many Java
applications use Java objects to model their application data, because Java is an Object
Oriented language, storing Java objects is a natural and common approach to persisting
data from Java.
There are many ways to access a relational database from Java, JPA is just the latest of
many different specifications, but seems to be the direction that Java persistence is
heading.

What is Java?
Java is an object oriented programming language first released by Sun Microsystems in
1995. It blended concepts from existing languages such as C++ and Smalltalk into a new
programming language. It achieved its success over the many rival languages of the day
because it was associated with this newish thing called the "Internet" in allowing Java
applets to be embedded in web pages and run using Netscape. Its other main reason for
success was unlike many of its competitors it was open, "free", and not embedded with a
integrated development environment (IDE). Java also included the source code to its class
library. This enabled Java to be adopted by many different companies producing their own
Java development environments but sharing the same language, this open model fostered
the growth in the Java language and continues today with the open sourcing of Java.
Java quickly moved from allowing developers to build dinky applets to being the standard
server-side language running much of the Internet today. The Enterprise Edition (JEE) of
Java was defined to provide an open model for server application to be written and portable
across any compliant JEE platform provider. The JEE standard is basically a basket of other
Java specifications brought together under one umbrella and has major providers including
IBM WebSphere, RedHat JBoss, Sun Glassfish, BEA WebLogic, Oracle AS and many others.

http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Relational_databases
http://en.wikipedia.org/wiki/Java_Persistence_API
http://en.wikipedia.org/wiki/JDBC
http://en.wikipedia.org/wiki/Serialization
http://en.wikipedia.org/wiki/J2EE_Connector_Architecture
http://en.wikipedia.org/wiki/Object_databases
http://en.wikipedia.org/wiki/XML_database
http://en.wikipedia.org/wiki/Object_Oriented
http://en.wikipedia.org/wiki/Object_Oriented
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/object_oriented
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/C++
http://en.wikipedia.org/wiki/Smalltalk

Java Persistence/ Print version 5

Google Trends
• Programming Languages [1][2]

• JEE Servers [3][4]

[1] http:/ / www. google. com/ trends?q=c%23%2C+ php%2C+ java%2C+ c%2B%2B%2C+ perl& ctab=0&
geo=all& date=all& sort=0

[2] Unfortunately hard to seperate Java island from Java language.
[3] http:/ / www. google. com/ trends?q=websphere%2C+ weblogic%2C+ jboss%2C+ glassfish%2C+ geronimo+

apache& ctab=0& geo=all& date=all& sort=0
[4] Could not include Oracle because of Oracle database hits.

See also
• Java Programming

What is a database?
A database is a program that stores data. There are many types of databases, flat-file,
hierarchical, relational, object-relational, object-oriented, xml, and others. The original
databases were mainly proprietary and non-standardized.
Relational database were the first databases to achieve great success and standardization,
relational database are characterize by the SQL (structured query language) standard to
query and modify the database, their client/server architecture, and relational table storage
structure. Relational databases achieve great success because their standardization
allowed many different vendors such as Oracle, IBM, and Sybase to produce interoperable
products giving users the flexibility to switch their vendor and avoid vendor lock-in to a
proprietary solution. Their client/server architecture allows the client programming
language to be decoupled from the server, allowing the database server to support
interface APIs into multiple different programming languages and clients.
Although relational database are relatively old technology they still dominate the industry.
There have been many attempts to replace the relational model, first with object-oriented
databases, then with object-relational databases, and finally with xml database, but none of
the new database models achieved much success and relational database remain the
overwhelming dominate database model.
The main relational databases used today are, Oracle, MySQL (Sun), PostgreSQL, DB2
(IBM), SQL Server (Microsoft).
• Google trend for databases (http:/ / www. google. com/ trends?q=oracle,+ sybase,+ sql+

server,+ mysql,+ db2& ctab=0& geo=all& date=all& sort=0)

What is JPA?
The Java Persistence Architecture API (JPA) is a Java specification for accessing, persisting
and managing data between Java objects / classes and the relational database. JPA was
defined as part of the EJB 3.0 specification as a replacement to the EJB 2 CMP Entity Beans
specification. It is now considered the standard industry approach for Object to Relational
Mapping (ORM) in the Java Industry.
JPA is just a specification, it is not a product, and cannot perform persistence, or anything
by itself. JPA is just a set of interfaces, and requires an implementation. There are open

http://www.google.com/trends?q=c%23%2C+php%2C+java%2C+c%2B%2B%2C+perl&ctab=0&geo=all&date=all&sort=0
http://www.google.com/trends?q=websphere%2C+weblogic%2C+jboss%2C+glassfish%2C+geronimo+apache&ctab=0&geo=all&date=all&sort=0
http://www.google.com/trends?q=c%23%2C+php%2C+java%2C+c%2B%2B%2C+perl&ctab=0&geo=all&date=all&sort=0
http://www.google.com/trends?q=c%23%2C+php%2C+java%2C+c%2B%2B%2C+perl&ctab=0&geo=all&date=all&sort=0
http://www.google.com/trends?q=websphere%2C+weblogic%2C+jboss%2C+glassfish%2C+geronimo+apache&ctab=0&geo=all&date=all&sort=0
http://www.google.com/trends?q=websphere%2C+weblogic%2C+jboss%2C+glassfish%2C+geronimo+apache&ctab=0&geo=all&date=all&sort=0
http://en.wikibooks.org/w/index.php?title=Java_Programming
http://en.wikipedia.org/wiki/database
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/client/server
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Sybase
http://en.wikipedia.org/wiki/Oracle_database
http://en.wikipedia.org/wiki/MySQL
http://en.wikipedia.org/wiki/PostgreSQL
http://en.wikipedia.org/wiki/DB2
http://en.wikipedia.org/wiki/Microsoft_SQL_Server
http://www.google.com/trends?q=oracle%2C+sybase%2C+sql+server%2C+mysql%2C+db2&ctab=0&geo=all&date=all&sort=0
http://www.google.com/trends?q=oracle%2C+sybase%2C+sql+server%2C+mysql%2C+db2&ctab=0&geo=all&date=all&sort=0
http://en.wikipedia.org/wiki/Java_Persistence_API
http://en.wikipedia.org/wiki/EJB

Java Persistence/ Print version 6

source and commercial JPA implementations to choose from and any Java EE 5 application
server should provide support for its use. JPA also requires a database to persist to.
JPA allows POJO (Plain Old Java Objects) to be easily persisted without requiring the classes
to implement any interfaces or methods as the EJB 2 CMP specification required. JPA
allows an object's object-relational mappings to be defined through standard annotations or
XML defining how the Java class maps to a relational database table. JPA also defines a
runtime EntityManager API for processing queries and transaction on the objects against
the database. JPA defines an object-level query language JPQL to allow querying of the
objects from the database.
JPA is the latest of several Java persistence specifications. The first was the OMG
persistence service Java binding, which was never very successful and I'm not sure of any
commercial products supporting it. Next came EJB 1.0 CMP Entity Beans, which was very
successful in being adopted by the big Java EE providers (BEA, IBM), but there was a
backlash against the spec by some users who thought the spec requirements on the Entity
Beans overly complex and overhead and performance poor. EJB 2.0 CMP tried to reduce
some of the complexity of Entity Beans through introducing local interfaces, but the
majority of the complexity remained. EJB 2.0 also lacked portability, in that the deployment
descriptors defining the object-relational mapping were not specified and all proprietary.
This backlash in part led to the creation of another Java persistence specification JDO (Java
Data Objects). JDO obtained somewhat of a "cult" following of several independent vendors
such as Kodo JDO, and several open source implementation, but never had much success
with the big Java EE vendors.
Despite the two competing Java persistence standards of EJB CMP and JDO, the majority of
users continued to prefer proprietary api solutions, mainly TopLink (which had been around
for some time and had its own POJO API) and Hibernate (which was a relatively new open
source product that also had its own POJO API and was quickly becoming the open source
industry standard). The TopLink product formerly owned by WebGain was also acquired by
Oracle, increasing it's influence on the Java EE community.
The EJB CMP backlash was only part of a backlash against all of Java EE which was seen as
too complex in general and prompted such products as the Spring container. This led the
EJB 3.0 specification to have a main goal of reducing the complexity, which lead the spec
committee down the path of JPA. JPA was meant to unify the EJB 2 CMP, JDO, Hibernate,
and TopLink API's and products, and seems to have been very successful in doing so.
Currently most of the persistence vendors have released implementations of JPA confirming
its' adoption by the industry and users. These include Hibernate (acquired by JBoss,
acquired by Red Hat), TopLink (acquired by Oracle), and Kodo JDO (acquired by BEA,
acquired by Oracle). Other products that have added support for JPA include Cocobase
(owned by Thought Inc.), and JPOX.
• EJB JPA Spec (http:/ / jcp. org/ aboutJava/ communityprocess/ final/ jsr220/ index. html)
• JPA ORM XML Schema (http:/ / java. sun. com/ xml/ ns/ persistence/ orm_1_0. xsd)
• JPA Persistence XML Schema (http:/ / java. sun. com/ xml/ ns/ persistence/

persistence_1_0. xsd)
• JPA JavaDoc (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/

package-summary. html)
• JPQL BNF

http://en.wikipedia.org/wiki/POJO
http://en.wikipedia.org/wiki/Java_Data_Objects
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Hibernate
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
https://java.sun.com/javaee/5/docs/api/javax/persistence/package-summary.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/package-summary.html
http://en.wikibooks.org/w/index.php?title=Java_Persistence/JPQL_BNF

Java Persistence/ Print version 7

What is new in JPA 2.0?
The JPA 2.0 specification is under development. It plans to add several enhancements to the
JPA 1.0 specification including:
• Extended Map support - Support for maintaining a key column for a Basic, Embeddable,

or Entity key value in any collection relationship using a Map.
• Derived Identifiers
• Nested embedding
• New collection mappings - Support for collections of Basic or Embeddable types.
• Pessimistic Locking
• EntityManager API updates
• Cache APIs
• Standard Properties
• Ordered List mappings - Support for maintaining an index column in any collection

relationship using a List.
• Orphan removal
• Metadata
• Query Criteria API
• JPQL enhancements

Resources
• JPA 2.0 Spec (http:/ / jcp. org/ en/ jsr/ detail?id=317)
• Eclipse EclipseLink to be JPA 2.0 Reference Implementation (http:/ / www. eclipse. org/

org/ press-release/ 20080317_Eclipselink. php)
• JPA 2.0 Reference Implementation Development (on EclipseLink) (http:/ / wiki. eclipse.

org/ EclipseLink/ Development/ JPA)

Other Persistence Specs
There are many specifications related to persistence in Java. The following table summaries
each specification.[1]

Spec Version Year of Last Release

JPA (Java Persistence API) 1.0 (EJB 3.0) 2006

JDO (Java Data Objects) 2.0 2006

SDO (Service Data Objects) 2.1 2006

JDBC (Java DataBase Connectivity) 4.0 2006

EJB CMP (Enterprise Java Beans, Container Managed
Persistence)

2.1 (EJB) 2003

JCA (Java EE Connector Architecture) 1.5 2003

[1] Last updated 2008-04

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Map_Key_Columns_%28JPA_2.0%29
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Element_Collection
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Order_Column_%28JPA_2.0%29
http://jcp.org/en/jsr/detail?id=317
http://www.eclipse.org/org/press-release/20080317_Eclipselink.php
http://www.eclipse.org/org/press-release/20080317_Eclipselink.php
http://wiki.eclipse.org/EclipseLink/Development/JPA
http://wiki.eclipse.org/EclipseLink/Development/JPA
http://en.wikipedia.org/wiki/Java_Persistence_API
http://en.wikipedia.org/wiki/Java_Data_Objects
http://en.wikipedia.org/wiki/Service_Data_Objects
http://en.wikipedia.org/wiki/JDBC
http://en.wikipedia.org/wiki/EJB
http://en.wikipedia.org/wiki/Java_EE_Connector_Architecture

Java Persistence/ Print version 8

Why use JPA or ORM?
This is an intriguing question. There are many reasons to use an ORM framework or
persistence product, and many reasons to use JPA in particular.

Reasons for ORM
• Leverages large persistence library to avoid developing solutions to problems that others

have already solved.
• Avoids low level JDBC and SQL code.
• Leverages object oriented programming and object model usage.
• Provides database and schema independence.
• Most ORM products are free and open source.
• Many enterprise corporations provide support and services for ORM products.
• Provides high end performance features such as caching and sophisticated database and

query optimizations.

Reasons for JPA
• It is a standard and part of EJB3 and JEE.
• Many free and open source products with enterprise level support.
• Portability across application servers and persistence products (avoids vendor lock-in).
• A usable and functional specification.
• Supports both JEE and JSE.
ORM can be a hot topic for some people, and there are many ORM camps. There are those
that endorse a particular standard or product. There are those that don't believe in ORM or
even objects in general and prefer JDBC. There are those that still believe that object
databases are the way to go. Personally I would recommend you use whatever technology
you are most comfortable with, but if you have never used ORM or JPA, perhaps give it a try
and see if you like it. The below list provides several discussions on why or why not to use
JPA and ORM.

Discussions on JPA and ORM Usage
• Why do we need anything other than JDBC? (Java Ranch) (http:/ / saloon. javaranch. com/

cgi-bin/ ubb/ ultimatebb. cgi?ubb=get_topic& f=78& t=003738)
• Why JPA? (BEA) (http:/ / edocs. bea. com/ kodo/ docs41/ full/ html/ ejb3_overview_why.

html)
• JPA Explained (The Server Side) (http:/ / www. theserverside. com/ news/ thread.

tss?thread_id=44526)
• JPA vs JDO (The Server Side) (http:/ / www. theserverside. com/ news/ thread.

tss?thread_id=40965)

Persistence Products
There are many persistence products to choose from. Most persistence products now
support a JPA interface, although there still are some exceptions. Which product you use
depends on your preference, but most people would recommend you use the JPA standard
whichever product you choose. This gives you the flexibility to switch persistence providers,
or port your application to another server platform which may use a different persistence

http://saloon.javaranch.com/cgi-bin/ubb/ultimatebb.cgi?ubb=get_topic&f=78&t=003738
http://saloon.javaranch.com/cgi-bin/ubb/ultimatebb.cgi?ubb=get_topic&f=78&t=003738
http://edocs.bea.com/kodo/docs41/full/html/ejb3_overview_why.html
http://edocs.bea.com/kodo/docs41/full/html/ejb3_overview_why.html
http://www.theserverside.com/news/thread.tss?thread_id=44526
http://www.theserverside.com/news/thread.tss?thread_id=44526
http://www.theserverside.com/news/thread.tss?thread_id=40965
http://www.theserverside.com/news/thread.tss?thread_id=40965

Java Persistence/ Print version 9

provider.
Determining which persistence product to use involves many criteria. Valid things to
consider include:
• Which persistence product does your server platform support and integrate with?
• What is the cost of the product, is it free and open source, can you purchase enterprise

level support and services?
• Do you have an existing relationship with the company producing the product?
• Is the product active and does it have a large user base?
• How does the product perform and scale?
• Does the product integrate with your database platform?
• Does the product have active and open forums, do questions receive useful responses?
• Is the product JPA compliant, what functionality does the product offer beyond the JPA

specification?

Existing Persistence Products
The following table summaries existing persistence products.[1]

Product JPA
1.0

JDO
2.0

CMP
2.1

Version Year of
Last

Release

Open
Source

Application
Servers[2]

Forum Posts per Month[3]

Hibernate
(Red Hat)

Yes 3.3.1 2008 Yes JBoss 650 (http:/ / forum. hibernate. org/
viewforum. php?f=1)

EclipseLink
(Eclipse)

Yes 1.0.2 2008 Yes OracleAS
(11g),
Oracle
Weblogic
(10.3),
Glassfish
(v3)

81 (http:/ / www. nabble. com/
EclipseLink---Users-f26658. html)

TopLink
(Oracle)

Yes Yes 11g 2008 OracleAS
(11g),
Oracle
Weblogic
(10.3)

80 (http:/ / forums. oracle. com/
forums/ forum. jspa?forumID=48)

OpenJPA
(Apache)

Yes 1.0.3 2008 Yes Geronimo 60 (http:/ / www. nabble. com/
OpenJPA-Users-f23252. html)

JPOX (http:/ /
www. jpox.
org/)
(SourceForge)

Yes Yes 1.2.3 2008 Yes 21 (http:/ / www. jpox. org/ servlet/
forum/ index)

TopLink
Essentials
(java.net)

Yes 2.0 2007 Yes Glassfish
(v2), SunAS
(9),
OracleAS
(10.1.3)

13 (http:/ / www. nabble. com/
java.
net---glassfish-persistence-f13455.
html)

Kodo (Oracle) Yes Yes 4.1 2007 Oracle
WebLogic
(10.3)

0 (http:/ / forums. bea. com/ bea/
forum. jspa?forumID=500000029)

[1] Last updated 2008-10

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Hibernate
http://forum.hibernate.org/viewforum.php?f=1
http://forum.hibernate.org/viewforum.php?f=1
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://www.nabble.com/EclipseLink---Users-f26658.html
http://www.nabble.com/EclipseLink---Users-f26658.html
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://forums.oracle.com/forums/forum.jspa?forumID=48
http://forums.oracle.com/forums/forum.jspa?forumID=48
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Open_JPA
http://www.nabble.com/OpenJPA-Users-f23252.html
http://www.nabble.com/OpenJPA-Users-f23252.html
http://www.jpox.org/
http://www.jpox.org/
http://www.jpox.org/
http://www.jpox.org/servlet/forum/index
http://www.jpox.org/servlet/forum/index
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink_Essentials
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink_Essentials
http://www.nabble.com/java.net---glassfish-persistence-f13455.html
http://www.nabble.com/java.net---glassfish-persistence-f13455.html
http://www.nabble.com/java.net---glassfish-persistence-f13455.html
http://www.nabble.com/java.net---glassfish-persistence-f13455.html
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Kodo
http://forums.bea.com/bea/forum.jspa?forumID=500000029
http://forums.bea.com/bea/forum.jspa?forumID=500000029

Java Persistence/ Print version 10

[2] Application server that includes the product as their JPA implementation
[3] Number of user forum posts for 2008-10. Note this is only an estimate of community size and may be

misleading due to several factors including users of open source products are more likely to post to forums,
where as users of commercial products are more likely to use support. The estimate is also confused by the fact
that some users post questions to generic EJB, JPA or ORM forums.

EclipseLink
EclipseLink is the open source Eclipse Persistence Services Project from the Eclipse
Foundation. The product provides an extensible framework that allows Java developers to
interact with various data services, including databases, XML, and Enterprise Information
Systems (EIS). EclipseLink supports a number of persistence standards including the Java
Persistence API (JPA), Java API for XML Binding (JAXB), Java Connector Architecture (JCA),
and Service Data Objects (SDO).
EclipseLink is based on the TopLink product, which Oracle contributed the source code
from to create the EclipseLink project. The original contribution was from TopLink's 11g
code base, and the entire code-base/feature set was contributed, with only EJB 2 CMP and
some minor Oracle AS specific integration removed. This differs from the TopLink
Essentials Glassfish contribution, which did not include some key enterprise features. The
package names were changed and some of the code was moved around.
The TopLink Mapping Workbench UI has also been contributed to the project.
EclipseLink is the intended path forward for persistence for Oracle and TopLink. It is
intended that the next major release of Oracle TopLink will include EclipseLink as well as
the next major release of Oracle AS.
EclipseLink supports usage in an OSGi environment.
EclipseLink was announced to be the JPA 2.0 reference implementation, and announced to
be the JPA provider for Glassfish v3.
• EclipseLink Home (http:/ / www. eclipse. org/ eclipselink/)
• EclipseLink Newsgroup (http:/ / www. eclipse. org/ newsportal/ thread.

php?group=eclipse. technology. eclipselink)
• EclipseLink Wiki (http:/ / wiki. eclipse. org/ EclipseLink)

TopLink
TopLink is one of the leading Java persistence products and JPA implementations. TopLink
is produced by Oracle and part of Oracle's OracleAS, WebLogic, and OC4J servers.
As of TopLink 11g, TopLink bundles the open source project EclipseLink for most of its
functionality.
The TopLink 11g release supports the JPA 1.0 specification. TopLink 10.1.3 also supports
EJB CMP and is the persistence provider for OracleAS OC4J 10.1.3 for both JPA and EJB
CMP. TopLink provides advanced object-relational mapping functionality beyond the JPA
specification, as well as providing persistence for object-relational data-types, and
Enterprise Information Systems (EIS/mainframes). TopLink includes sophisticated object
caching and performance features. TopLink provides a Grid extension that integrate with
Oracle Coherence. TopLink provides object-XML mapping support and provides a JAXB
implementation and web service integration. TopLink provides a Service Data Object (SDO)
implementation.

http://en.wikipedia.org/wiki/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/OSGi
http://www.eclipse.org/eclipselink/
http://www.eclipse.org/newsportal/thread.php?group=eclipse.technology.eclipselink
http://www.eclipse.org/newsportal/thread.php?group=eclipse.technology.eclipselink
http://wiki.eclipse.org/EclipseLink
http://en.wikipedia.org/wiki/TopLink
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 11

TopLink provides a rich user interface through the TopLink Mapping Workbench. The
Mapping Workbench allows for graphical mapping of an object model to a data model, as
allows for generation of a data model from an object model, and generation of an object
model from a data model, and auto-mapping of an existing object and data model. The
TopLink Mapping Workbench functionality is also integrated with Oracle's JDeveloper IDE.
TopLink contributed part of its source code to become the JPA 1.0 reference
implementation under the Sun java.net Glassfish project. This open-source product is called
TopLink Essentials, and despite a different package name (oracle.toplink.essentials) it is
basically a branch of the source code of the TopLink product with some advanced
functionality stripped out.
TopLink contributed practically its entire source code to the Eclipse Foundation EclipseLink
product. This is an open source product currently in incubation that represents the path
forward for TopLink. The package name is different (org.eclipse.persistence) but the source
code it basically a branch of the TopLink 11g release. Oracle also contributed its Mapping
Workbench source code to the project. The TopLink Mapping Workbench developers also
were major contributors to the Eclipse Dali project for JPA support.
TopLink was first developed in Smalltalk and ported to Java in the 90's, and has over 15
years worth of object persistence solutions. TopLink originally provided a proprietary POJO
persistence API, when EJB was first released TopLink provided one of the most popular EJB
CMP implementations, although it continued to recommend its POJO solution. TopLink also
provided a JDO 1.0 implementation for a few releases, but this was eventually deprecated
and removed once the JPA specification had been formed. Oracle and TopLink have been
involved in each of the EJB, JDO and EJB3/JPA expert groups, and Oracle was the co-lead
for the EJB3/JPA specification.
• Oracle TopLink Home (http:/ / www. oracle. com/ technology/ products/ ias/ toplink/

index. html)
• Oracle TopLink Forum (http:/ / forums. oracle. com/ forums/ forum. jspa?forumID=48)
• Oracle TopLink Wiki (http:/ / wiki. oracle. com/ page/ TopLink)
TopLink Resources
• TopLink Automatic Schema Generation Options (http:/ / docs. sun. com/ app/ docs/ doc/

819-3672/ gbwmk?a=view)

Hibernate
Hibernate was an open source project developed by a team of Java software developers
around the world led by Gavin King. JBoss, Inc. (now part of Red Hat) later hired the lead
Hibernate developers and worked with them in supporting Hibernate.
The current version of Hibernate is Version 3.x. Hibernate provides both a proprietary
POJO API, and JPA support.

http://www.oracle.com/technology/products/ias/toplink/index.html
http://www.oracle.com/technology/products/ias/toplink/index.html
http://forums.oracle.com/forums/forum.jspa?forumID=48
http://wiki.oracle.com/page/TopLink
http://docs.sun.com/app/docs/doc/819-3672/gbwmk?a=view
http://docs.sun.com/app/docs/doc/819-3672/gbwmk?a=view
http://en.wikipedia.org/wiki/Hibernate

Java Persistence/ Print version 12

TopLink Essentials
TopLink Essentials is an open source project from the Sun java.net Glassfish community. It
is the EJB3 JPA 1.0 reference implementation, and is the JPA provider for the Sun Glassfish
v1 application server.
TopLink Essentials was based on the TopLink product, which Oracle contributed some of
the source code from to create the TopLink Essentials project. The original contribution
was from TopLink's 10.1.3 code base, only some of the TopLink product source code was
contributed, which did not include some key enterprise features. The package names were
changed and some of the code was moved around.
TopLink Essentials has been somewhat replaced by the EclipseLink project. EclipseLink will
be the JPA 2.0 reference implementation and be part of Sun Glassfish v3.
• TopLink Essentials Home (https:/ / glassfish. dev. java. net/ javaee5/ persistence/ index.

html)
• TopLink Essentials Forum (http:/ / www. nabble. com/ java.

net---glassfish-persistence-f13455. html)
• TopLink Essentials Wiki (http:/ / wiki. glassfish. java. net/ Wiki.

jsp?page=TopLinkEssentials)

Kodo
Kodo (http:/ / www. bea. com/ kodo/), was originally developed as an Java Data Objects
(JDO) implementation, by SolarMetric. BEA Systems acquired SolarMetric in 2005, where
Kodo was expanded to be an implementation of both the JDO and JPA specifications. In
2006, BEA donated a large part of the Kodo source code to the Apache Software
Foundation under the name OpenJPA. BEA (and Kodo) were acquired by Oracle.

Open JPA
OpenJPA is an Apache project for supporting the JPA specification. Its' source code was
originally donated from (part of) BEA's Kodo product.
Ebean (http:/ / www. avaje. org) is a Java ORM based on the JPA specification.
The goal of Ebean is to provide mapping compatible with JPA while providing a simpler API
to use and learn.
• @EnumMapping
• @Formula

Mapping
The first thing that you need to do to persist something in Java is define how it is to be
persisted. This is called the mapping process (details (http:/ / en. wikipedia. org/ wiki/

Object-Relational_impedance_mismatch)). There have been many different solutions to the
mapping process over the years, including some object-databases that didn't require you
map anything, just lets you persist anything directly. Object-relational mapping tools that
would generate an object model for a data model that included the mapping and
persistence logic in it. ORM products that provided mapping tools to allow the mapping of

http://en.wikipedia.org/wiki/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
https://glassfish.dev.java.net/javaee5/persistence/index.html
https://glassfish.dev.java.net/javaee5/persistence/index.html
http://www.nabble.com/java.net---glassfish-persistence-f13455.html
http://www.nabble.com/java.net---glassfish-persistence-f13455.html
http://wiki.glassfish.java.net/Wiki.jsp?page=TopLinkEssentials
http://wiki.glassfish.java.net/Wiki.jsp?page=TopLinkEssentials
http://www.bea.com/kodo/
http://en.wikipedia.org/wiki/OpenJPA
http://www.avaje.org
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Mapping
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch
http://en.wikipedia.org/wiki/Object-Relational_impedance_mismatch

Java Persistence/ Print version 13

an existing object model to an existing data model and stored this mapping meta-data in flat
files, database tables, XML and finally annotations.
In JPA mappings can either be stored through Java annotations, or in XML files. One
significant aspect of JPA is that only the minimal amount of mapping is required. JPA
implementations are required to provide defaults for almost all aspects of mapping and
object.
The minimum requirement to mapping an object in JPA is to define which objects can be
persisted. This is done through either marking the class with the @Entity (https:/ / java.
sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ Entity. html) annotation, or adding an
<entity> tag for the class in the persistence unit's ORM XML file. Also the primary key, or
unique identifier attribute(s) must be defined for the class. This is done through marking
one of the class' fields or properties (get method) with the @Id annotation, or adding an
<id> tag for the class' attribute in the ORM XML (http:/ / java. sun. com/ xml/ ns/
persistence/ orm_1_0. xsd) file.
The JPA implementation will default all other mapping information, including defaulting the
table name, column names for all defined fields or properties, cardinality and mapping of
relationships, all SQL and persistence logic for accessing the objects. Most JPA
implementations also provide the option of generating the database tables at runtime, so
very little work is required by the developer to rapidly develop a persistent JPA application.

Example object model

https://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http://en.wikibooks.org/w/index.php?title=File:Employee-model.PNG

Java Persistence/ Print version 14

Common Problems
My annotations are ignored

This typically occurs when you annotate both the fields and methods (properties) of
the class. You must choose either field or property access, and be consistent. Also
when annotating properties you must put the annotation on the get method, not the set
method. Also ensure that you have not defined the same mappings in XML, which may
be overriding the annotations. You may also have a classpath issue, such as having an
old version of the class on the classpath.

Example of a persistent entity mappings in annotations
import javax.persistence.*;
...
@Entity
public class Employee {
 @Id
 private long id;
 private String firstName;
 private String lastName;
 private Address address;
 private List<Phone> phones;
 private Employee manager;
 private List<Employee> managedEmployees;
 ...
}

Example of a persistent entity mappings in XML
<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings version="1.0"
 xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
orm_1_0.xsd">
 <description>The minimal mappings for a persistent entity in XML.</description>
 <entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 </attributes>
 </entity>
</entity-mappings>

Java Persistence/ Print version 15

Odd behavior
There are many reasons that odd behavior can occur with persistence. One common
issue that can cause odd behavior is using property access and putting side effects in
your get or set methods. For this reason it is generally recommended to use field
access in mapping, i.e. putting your annotations on your variables not your get
methods.
For example consider:

public void setPhones(List<Phone> phones) {
 for (Phone phone : phones) {
 phone.setOwner(this);
 }
 this.phones = phones;
}

This may look innocent, but these side effects can have unexpected consequences. For
example if the relationship was lazy this would have the effect of always instantiating
the collection when set from the database. It could also have consequences with
certain JPA implementations for persisting, merging and other operations, causing
duplicate inserts, missed updates, or a corrupt object model.
I have also seen simply incorrect property methods, such as a get method that always
returns a new object, or a copy, or set methods that don't actually set the value.
In general if you are going to use property access, ensure your property methods are
free of side effects. Perhaps even use different property methods than your application
uses.

Tables
A table is the basic persist structure of a relational database.
A table contains a list of columns which define the table's
structure, and a list of rows that define the table's data.
Each column has a specific type and generally size. The
standard set of relational types are limited to basic types
including numeric, character, date-time, and binary
(although most modern databases have additional types and
typing systems). Tables can also have constraints that define
the rules which restrict the row data, such as primary key,
foreign key, and unique constraints. Tables also have other

artifacts such as indexes, partitions and triggers.

A typical mapping of a persist class will map the class to a single table. In JPA this is
defined through the @Table (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ Table. html) annotation or <table> XML element. If no table annotation is
present, the JPA implementation will auto assign a table for the class, the JPA default table
name is the name of the class as uppercase (minus the package). Each attribute of the class
will be stored in a column in the table.

http://en.wikibooks.org/w/index.php?title=File:EMPLOYEE_Table_(Database).PNG
http://en.wikipedia.org/wiki/Table_(database)
https://java.sun.com/javaee/5/docs/api/javax/persistence/Table.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Table.html

Java Persistence/ Print version 16

Example mapping annotations for an entity with a single table
...
@Entity
@Table(name="EMPLOYEE")
public class Employee {
 ...
}

Example mapping XML for an entity with a single table
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <table name="EMPLOYEE"/>
<entity/>

Advanced
Although in the ideal case each class would map to a single table, this is not always
possible. Other scenarios include:
• Multiple tables : One class maps to 2 or multiple tables.
• Sharing tables : 2 or multiple classes are stored in the same table.
• Inheritance : A class is involved in inheritance and has an inherited and local table.
• Views : A class maps to a view.
• Stored procedures : A class maps to a set of stored procedures.
• Partitioning : Some instances of a class map to one table, and other instances to another

table.
• Replication : A class's data is replicated to multiple tables.
• History : A class has historical data.
These are all advanced cases, some are handled by the JPA Spec and many are not. The
following sections investigate each of these scenarios further and include what is supported
by the JPA spec, what can be done to workaround the issue within the spec, and how to use
some JPA implementations extensions to handle the scenario.

Multiple tables
Sometimes a class maps to multiple tables. This
typically occurs on legacy or existing data models
where the object model and data model do not match. It
can also occur in inheritance when subclass data is
stored in additional tables. Multiple tables may also be
used for performance, partitioning or security reasons.

JPA allows multiple tables to be assigned to a single class. The @SecondaryTable (https:/ /

java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ SecondaryTable. html) and
SecondaryTables annotations or <secondary-table> elements can be used. By default the
@Id column(s) are assumed to be in both tables, such that the secondary table's @Id
column(s) are the primary key of the table and a foreign key to the first table. If the first
table's @Id column(s) are not named the same the @PrimaryKeyJoinColumn (https:/ / java.

sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ PrimaryKeyJoinColumn. html) or

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Filters
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Inheritance
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Views
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Stored_procedures
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Partitioning
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Replication
http://en.wikibooks.org/w/index.php?title=Java_Persistence/History
http://en.wikibooks.org/w/index.php?title=File:Emp_Tables_(Database).PNG
https://java.sun.com/javaee/5/docs/api/javax/persistence/SecondaryTable.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/SecondaryTable.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/PrimaryKeyJoinColumn.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/PrimaryKeyJoinColumn.html

Java Persistence/ Print version 17

<primary-key-join-column> can be used to define the foreign key join condition.
In a multiple table entity, each mapping must define which table the mapping's columns are
from. This is done using the table attribute of the @Column or @JoinColumn annotations or
XML elements. By default the primary table of the class is used, so you only need to set the
table for secondary tables. For inheritance the default table is the primary table of the
subclass being mapped.

Example mapping annotations for an entity with multiple tables
...
@Entity
@Table(name="EMPLOYEE")
@SecondaryTable(name="EMP_DATA")
@PrimaryKeyJoinColumn(name="EMP_ID", referencedColumnName="ID")
public class Employee {
 ...
 @Column(name="YEAR_OF_SERV", table="EMP_DATA")
 private int yearsOfService;

 @OneToOne
 @JoinColumn(name="MGR_ID", table="EMP_DATA",
referencedColumnName="EMP_ID")
 private Employee manager;
 ...
}

Example mapping XML for an entity with multiple tables
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <table name="EMPLOYEE"/>
 <secondary-table name="EMP_DATA">
 <primary-key-join-column name="EMP_ID" referenced-column-name="ID"/>
 </secondary-table>
 <attributes>
 ...
 <basic name="yearsOfService">
 <column name="YEAR_OF_SERV" table="EMP_DATA"/>
 </basic>
 <one-to-one name="manager">
 <join-column name="MGR_ID" table="EMP_DATA" referenced-column-name="EMP_ID"/>
 </one-to-one>
 </attributes>
</entity>

With the @PrimaryKeyJoinColumn the name refers to the foreign key column in the
secondary table and the referencedColumnName refers to the primary key column in the
first table. If you have multiple secondary tables, they must always refer to the first table.
When defining the table's schema typically you will define the join columns in the secondary
table as the primary key of the table, and a foreign key to the first table. Depending how

Java Persistence/ Print version 18

you have defined your foreign key constraints, the order of the tables can be important, the
order will typically match the order that the JPA implementation will insert into the tables,
so ensure the table order matches your constraint dependencies.
For relationships to a class that has multiple tables the foreign key (join column) always
maps to the primary table of the target. JPA does not allow having a foreign key map to a
table other than the target object's primary table. Normally this is not an issue as foreign
keys almost always map to the id/primary key of the primary table, but in some advanced
scenarios this may be an issue. Some JPA products allow the column or join column to use
the qualified name of the column (i.e.
@JoinColumn(referenceColumnName="EMP_DATA.EMP_NUM"), to allow this type of
relationship. Some JPA products may also support this through their own API, annotations
or XML.

Multiple tables with foreign keys
Sometimes you may have a secondary table that is
referenced through a foreign key from the primary
table to the secondary table instead of a foreign key
from the secondary table to the primary table. You may
even have a foreign key between two of the secondary
tables. Consider having an EMPLOYEE and ADDRESS

table where EMPLOYEE refers to ADDRESS through an ADDRESS_ID foreign key, and (for
some strange reason) you only want a single Employee class that has the data from both
tables. The JPA spec does not cover this directly, so if you have this scenario the first thing
to consider, if you have the flexibility, is to change your data model to stay within the
confines of the spec. You could also change your object model to define a class for each
table, in this case an Employee class and an Address class, which is typically the best
solution. You should also check with you JPA implementation to see what extensions it
supports in this area.

One way to solve the issue is simply to swap your primary and secondary tables. This will
result in having the secondary table referencing the primary tables primary key and is
within the spec. This however will have side-effects, one being that you now changed the
primary key of your object from EMP_ID to ADDRESS_ID, and may have other mapping and
querying implications. If you have more than 2 tables this also may not work.
Another option is to just use the foreign key column in the @PrimaryKeyJoinColumn, this
will technically be backward, and perhaps not supported by the spec, but may work for
some JPA implementations. However this will result in the table insert order not matching
the foreign key constraints, so the constraints will need to be removed, or deferred.
It is also possible to map the scenario through a database view. A view could be defined
joining the two tables and the class could be mapped to the view instead of the tables.
Views are read-only on some databases, but many also allow writes, or allow triggers to be
used to handle writes.
Some JPA implementations provide extensions to handle this scenarios.

TopLink, EclipseLink : Provides a proprietary API for its mapping model
ClassDescriptor.addForeignKeyFieldNameForMultipleTable() that allows for
arbitrary complex foreign keys relationships to be defined among the secondary tables.

http://en.wikibooks.org/w/index.php?title=File:Emp_Add_Tables_(Database).PNG
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 19

This can be configured through using a @DescriptorCustomizer annotation and
DescriptorCustomizer class.

Multiple table joins
Occasionally the data model and object model do not
get along very well at all. The database could be a
legacy model and not fit very well with the new
application model, or the DBA or object architect may
be a little crazy. In these cases you may require
advanced multiple table joins.

Examples of these include having two tables related not by their primary or foreign keys,
but through some constant or computation. Consider having an EMPLOYEE table and an
ADDRESS table, the ADDRESS table has an EMP_ID foreign key to the EMPLOYEE table, but
there are several address for each employee and only the address with the TYPE of "HOME"
is desired. In this case data from both of the tables is desired to be mapped in the
Employee object. A join expression is required where the foreign key matches and the
constant matches.

Again this scenario could be handled through redesigning the data or object model, or
through using a view. Some JPA implementations provide extensions to handle this
scenarios.

TopLink, EclipseLink : Provides a proprietary API for its mapping model
DescriptorQueryManager.setMultipleTableJoinExpression() that allows for
arbitrary complex multiple table joins to be defined. This can be configured through
using a @DescriptorCustomizer annotation and DescriptorCustomizer class.

Multiple table outer joins
Another perversion of multiple table mapping is to desire to outer join the secondary table.
This may be desired if the secondary may or may not have a row defined for the object.
Typically the object should be read-only if this is to be attempted, as writing to a row that
may or may not be there can be tricky.
This is not directly supported by JPA, and it is best to reconsider the data model or object
model design if faced with this scenario. Again it is possible to map this through a database
view, where an outer join is used to join the tables in the view.
Some JPA implementation support using outer joins for multiple tables.

Hibernate : This can be accomplished through using the Hibernate @Table annotation
and set its optional attribute to true. This will configure Hibernate to use an outer
join to read the table, and will not write to the table if all of the attributes mapping to
the table are null.
TopLink, EclipseLink : If the database supports usage of outer join syntax in the where
clause (Oracle, Sybase, SQL Server), then the multiple table join expression could be
used to configure an outer join to be used to read the table.

http://en.wikibooks.org/w/index.php?title=File:Emp_Adds_Tables_(Database).PNG
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Hibernate
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 20

Tables with special characters and mixed case
Some JPA providers may have issues with table and column names with special characters,
such as spaces. In general it is best to use standard characters, no spaces, and all
uppercase names. International languages should be ok, as long as the database and JDBC
driver supports the character set.
It may be required to "quote" table and column names with special characters or in some
cases with mixed case. For example if the table name had a space it could be defined as the
following:

 @Table("\"Employee Data\"")

Some databases support mixed case table and column names, and others are case
insensitive. If your database is case insensitive, or you wish your data model to be portable,
it is best to use all uppercase names. This is normally not a big deal with JPA where you
rarely use the table and column names directly from your application, but can be an issue in
certain cases if using native SQL queries.

Table qualifiers, schemas, or creators
A database table may require to be prefixed with a table qualifier, such as the table's
creator, or its' namespace, schema, or catalog. Some databases also support linking table
on other database, so the link name can also be a table qualifier.
In JPA a table qualifier can be set on a table through the schema or catalog attribute.
Generally it does not matter which attribute is used as both just result in prefixing the table
name. Technically you could even include the full name "schema.table" as the table's name
and it would work. The benefit of setting the prefix in the schema or catalog is a default
table qualifier can be set for the entire persistence unit, also not setting the real table name
may impact native SQL queries.
If all of your tables require the same table qualifier, you can set the default in the orm.xml.

Example mapping annotations for an entity with a qualified table
...
@Entity
@Table(name="EMPLOYEE" schema="ACME")
public class Employee {
 ...
}

Example mapping XML for default (entire persistence unit) table
qualifier
<entity-mappings>
 <persistence-unit-metadata>
 <persistence-unit-defaults>
 <schema name="ACME"/>
 </persistence-unit-defaults>
 </persistence-unit-metadata>

Java Persistence/ Print version 21

</entity-mappings>

Example mapping XML for default (orm file) table qualifier
<entity-mappings>
 <schema name="ACME"/>
 ...
</entity-mappings>

 Identity
An object id (OID) is something that uniquely identifies an object. Within a VM this is
typically the object's pointer. In a relational database table a row is uniquely identified in
its' table by its' primary key. When persisting objects to a database you need a unique
identifier for the objects, this allows you to query the object, define relationships to the
object, and update and delete the object. In JPA the object id is defined through the @Id
(https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ Id. html) annotation or
<id> element and should correspond to the primary key of the object's table.

Example id annotation
...
@Entity
public class Employee {
 @Id
 private long id
 ...
}

Example id XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <id name="id"/>
<entity/>

Common Problems

Strange behavior, unique constraint violation.
You must never change the id of an object. Doing so will cause errors, or strange
behavior depending on your JPA provider. Also do not create two objects with the same
id, or try persisting an object with the same id as an existing object. If you have an
object that may be existing use the EntityManager merge() API, do not use
persist() for an existing object, and avoid relating an un-managed existing object to
other managed objects.

http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_app_password.png
http://en.wikipedia.org/wiki/Primary_key
https://java.sun.com/javaee/5/docs/api/javax/persistence/Id.html

Java Persistence/ Print version 22

No primary key.
See No Primary Key.

Sequencing
An object id can either be a natural id or a generated id. A natural id is one that occurs in
the object and has some meaning in the application. Examples of natural ids include user
ids, email addresses, phone numbers, and social insurance numbers. A generated id is one
that is generated by the system. A sequence number in JPA is a sequential id generated by
the JPA implementation and automatically assigned to new objects. The benefits of using
sequence numbers are that they are guaranteed to be unique, allow all other data of the
object to change, are efficient values for querying and indexes, and can be efficiently
assigned. The main issue with natural ids is that everything always changes at some point;
even a person's social insurance number can change. Natural ids can also make querying,
foreign keys and indexing less efficient in the database.
In JPA an @Id can be easily assigned a generated sequence number through the
@GeneratedValue (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/
GeneratedValue. html) annotation, or <generated-value> element.

Example generated id annotation
...
@Entity
public class Employee {
 @Id
 @GeneratedValue
 private long id
 ...
}

Sequence Strategies
There are several strategies for generating unique ids. Some strategies are database
agnostic and others make use of built-in databases support.
JPA provides support for several strategies for id generation defined through the
GenerationType (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/
GenerationType. html) enum, TABLE, SEQUENCE and IDENTITY.
The choice of which sequence strategy to use is important as it effect performance,
concurrency and portability.

Table sequencing
Table sequencing uses a table in the database to generate unique ids. The table has two
columns, one stores the name of the sequence, the other stores the last id value that was
assigned. There is a row in the sequence table for each sequence object. Each time a new id
is required the row for that sequence is incremented and the new id value is passed back to
the application to be assigned to an object. This is just one example of a sequence table
schema, for other table sequencing schemas see Customizing.

https://java.sun.com/javaee/5/docs/api/javax/persistence/GeneratedValue.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/GeneratedValue.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/GenerationType.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/GenerationType.html

Java Persistence/ Print version 23

Table sequencing is the most portable solution because it just uses a regular database
table, so unlike sequence and identity can be used on any database. Table sequencing also
provides good performance because it allows for sequence pre-allocation, which is
extremely important to insert performance, but can have potential concurrency issues.
In JPA the @TableGenerator (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ TableGenerator. html) annotation or
SEQ_NAMESEQ_COUNTEMP_SEQ123PROJ_SEQ550

Example table generator annotation
...
@Entity
public class Employee {
 @Id
 @GeneratedValue(strategy=TABLE, generator="EMP_SEQ")
 @TableGenerator(name="EMP_SEQ", table="SEQUENCE_TABLE",
pkColumnName="SEQ_NAME",
 valueColumnName="SEQ_COUNT", pkColumnValue="EMP_SEQ")
 private long id;
 ...
}

Example generated id XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <id name="id">
 <generated-value/>
 </id>
<entity/>

Example table generator XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <id name="id">
 <generated-value strategy="TABLE" generator="EMP_SEQ"/>
 <table-generator name="EMP_SEQ" table="SEQUENCE_TABLE" pk-column-name="SEQ_NAME",
 value-column-name="SEQ_COUNT", pk-column-value="EMP_SEQ"/>
 </id>
<entity/>

Common Problems

Error when allocating a sequence number.
Errors such as "table not found", "invalid column" can occur if you do not have a
SEQUENCE table defined in your database, or its' schema does not match what your
configured, or what your JPA provider is expecting by default. Ensure you create the
sequence table correctly, or configure your @TableGenerator to match the table that
you created, or let your JPA provider create you tables for you (most JPA provider
support schema creation). You may also get an error such as "sequence not found",
this means you did not create a row in the table for your sequence. You must insert an

https://java.sun.com/javaee/5/docs/api/javax/persistence/TableGenerator.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/TableGenerator.html

Java Persistence/ Print version 24

initial row in the sequence table for your sequence with the initial id (i.e. INSERT INTO
SEQUENCE_TABLE (SEQ_NAME, SEQ_COUNT) VALUES ("EMP_SEQ", 0)), or let your JPA
provider create your schema for you.

Deadlock or poor concurrency in the sequence table.
See concurrency issues.

Sequence objects
Sequence objects use special database objects to generate ids. Sequence objects are only
supported in some databases, such as Oracle and Postgres. In Oracle a SEQUENCE object
has a name, INCREMENT, and other database object settings. Each time the
<sequence>.NEXTVAL is selected the sequence is incremented by the INCREMENT.
Sequence objects provide the optimal sequencing option, as they are the most efficient and
have the best concurrency, however they are the least portable as most databases do not
support them. Sequence objects support sequence preallocation through setting the
INCREMENT on the database sequence object to the sequence preallocation size.
In JPA the @SequenceGenerator (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ SequenceGenerator. html) annotation or <sequence-generator> element is
used to define a sequence object. The SequenceGenerator defines a sequenceName for the
name of the database sequence object, and an allocationSize for the sequence
preallocation size or sequence object INCREMENT.

Example sequence generator annotation
...
@Entity
public class Employee {
 @Id
 @GeneratedValue(strategy=SEQUENCE, generator="EMP_SEQ")
 @SequenceGenerator(name="EMP_SEQ", sequenceName="EMP_SEQ",
allocationSize=100)
 private long id;
 ...
}

Example sequence generator XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <id name="id">
 <generated-value strategy="SEQUENCE" generator="EMP_SEQ"/>
 <sequence-generator name="EMP_SEQ" sequence-name="EMP_SEQ" allocation-size="100"/>
 </id>
<entity/>

https://java.sun.com/javaee/5/docs/api/javax/persistence/SequenceGenerator.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/SequenceGenerator.html

Java Persistence/ Print version 25

Common Problems

Error when allocating a sequence number.
Errors such as "sequence not found", can occur if you do not have a SEQUENCE object
defined in your database. Ensure you create the sequence object, or let your JPA
provider create your schema for you (most JPA providers support schema creation).
When creating your sequence object, ensure the sequence's INCREMENT matches your
SequenceGenerator's allocationSize. The DDL to create a sequence object depends
on the database, for Oracle it is, CREATE SEQUENCE EMP_SEQ INCREMENT BY 100
START WITH 100.

Invalid, duplicate or negative sequence numbers.
This can occur if you sequence object's INCREMENT does not match your
allocationSize. This results in the JPA provider thinking it got back more sequences
than it really did, and ends up duplicating values, or with negative numbers. This can
also occur on some JPA providers if you sequence object's STARTS WITH is 0 instead of
a value equal or greater to the allocationSize.

Identity sequencing
Identity sequencing uses special IDENTITY columns in the database to allow the database
to automatically assign an id to the object when its' row is inserted. Identity columns are
supported in many databases, such as MySQL, DB2, SQL Server, Sybase and Postgres.
Oracle does not support IDENTITY columns but they can be simulated through using
sequence objects and triggers.
Although identity sequencing seems like the easiest method to assign an id, they have
several issues. One is that since the id is not assigned by the database until the row is
inserted the id cannot be obtained in the object until after commit or after a flush call.
Identity sequencing also does not allow for sequence preallocation, so can require a select
for each object that is inserted, potentially causing a major performance problem, so in
general are not recommended.
In JPA there is no annotation or element for identity sequencing as there is no additional
information to specify. Only the GeneratedValue's strategy needs to be set to IDENTITY.

Example identity annotation
...
@Entity
public class Employee {
 @Id
 @GeneratedValue(strategy=IDENTITY)
 private long id;
 ...
}

Java Persistence/ Print version 26

Example identity XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <id name="id">
 <generated-value strategy="IDENTITY"/>
 </id>
<entity/>

Common Problems

null is inserted into the database, or error on insert.
This typically occurs because the @Id was not configured to use an
@GeneratedValue(strategy="IDENTITY"). Ensure it is configured correctly. It could
also be that your JPA provider does not support identity sequencing on the database
platform that you are using, or you have not configured your database platform. Most
providers require that you set the database platform through a persistence.xml
property, most provider also allow you to customize your own platform if it is not
directly supported. It may also be that you did not set your primary key column in your
table to be an identity type.

Object's id is not assign after persist.
Identity sequencing requires the insert to occur before the id can be assigned, so it is
not assigned on persist like other types of sequencing. You must either call commit()
on the current transaction, or call flush() on the EntityManager. It may also be that
you did not set your primary key column in your table to be an identity type.

Child's id is not assign from parent on persist.
A common issue is that the generated Id is part of a child object's Id through a
OneToOne or ManyToOne mapping. In this case, because JPA requires that the child
define a duplicate Basic mapping for the Id, its Id will be inserted as null. One
solution to this is to mark the Column on the Id mapping in the child as
insertable=false, updateable=false, and define the OneToOne or ManyToOne using
a normal JoinColumn this will ensure the foreign key field is populated by the
OneToOne or ManyToOne not the Basic. Another option is to first persist the parent,
then call flush() before persisting the child.

Poor insert performance.
Identity sequencing does not support sequence preallocation, so requires a select after
each insert, in some cases doubling the insert cost. Consider using a sequence table,
or sequence object to allow sequence preallocation.

Advanced

Composite Primary Keys
A composite primary key is one that is made up of several columns in the table. A composite
primary key can be used if no single column in the table is unique. In general it is normally
more efficient and much simpler to have a singleton primary key, such as a generated

Java Persistence/ Print version 27

sequence number, but sometimes a composite primary key is desirable and unavoidable.

Composite primary keys can be common in legacy database schemas, where cascaded keys
can sometimes be used. This is where you have a model where dependent objects include
their parent's primary key, i.e. COMPANY's primary key is COMPANY_ID, DEPARTMENT's primary
key is composed of COMPANY_ID, and DEP_ID, EMPLOYEE's primary key is composed of
COMPANY_ID, DEP_ID, and EMP_ID, and so on. Some OO Java designers may find this type of
model disgusting, but some DBA's actually think it is the correct model. Issues with the
model include the obvious fact that Employee's cannot switch departments, but also foreign
key relationships become more complex and all primary key queries, updates, deletes,
caching become less efficient. On the plus side, each department has control over their own
ids, and it you need to partition the database EMPLOYEE table, you can easily do so based on
the COMPANY_ID or DEP_ID, as these are included in every query.
Other common usages of composite primary key include many-to-many relationships where
the join table has additional columns, so the table is mapped to an object, whose primary
key consists of both foreign key columns. Also dependent or aggregate one-to-many
relationships where the child object's primary key consists of its' parent's primary key and a
locally unique field.
There are two methods of declaring a composite primary key in JPA, IdClass and
EmbeddedId.

Id Class
An IdClass defines a separate Java class to represent the primary key. It is defined
through the @IdClass (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/
IdClass. html) annotation or <id-class> XML element. The IdClass must define an
attribute (field/property) that mirrors each Id attribute in the entity. It must have the same
attribute name and type. When using an IdClass you still require to mark each Id
attribute in the entity with @Id.
The main purpose of the IdClass is to be used as the structure passed to the
EntityManager find() and getReference() API. Some JPA products also use the IdClass

http://en.wikibooks.org/w/index.php?title=File:Cascaded-keys.PNG
https://java.sun.com/javaee/5/docs/api/javax/persistence/IdClass.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/IdClass.html

Java Persistence/ Print version 28

as a cache key to track an object's identity. Because of this, it is required (depending on JPA
product) to implement an equals() and hashCode() method on the IdClass. Ensure that
the equals() method checks each part of the primary key, and correctly uses equals for
objects and == for primitives. Ensure that the hashCode() method will return the same
value for two equal objects.

TopLink / EclipseLink : Do not require the implementation of equals() or hashCode()
in the id class.

Example id class annotation
...
@Entity
@IdClass(EmployeePK.class)
public class Employee {
 @Id
 private long employeeId

 @Id
 private long companyId

 @Id
 private long departmentId
 ...
}

Example id class XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <id-class class="org.acme.EmployeePK"/>
 <id name="employeeId"/>
 <id name="companyId"/>
 <id name="departmentId"/>
<entity/>

Example id class
...
public class EmployeePK {
 private long employeeId;

 private long companyId;

 private long departmentId;

 public EmployeePK(long employeeId, long companyId, long
departmentId) {
 this.employeeId = employeeId;
 this.companyId = companyId;
 this.departmentId = departmentId;
 }

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 29

 public boolean equals(Object object) {
 if (object instanceof EmployeePK) {
 EmployeePK pk = (EmployeePK)object;
 return employeeId == pk.employeeId && companyId ==
pk.companyId && departmentId == pk.departmentId;
 } else {
 return false;
 }
 }

 public int hashCode() {
 return employeeId + companyId + departmentId;
 }
}

Embedded Id
An EmbeddedId defines a separate Embeddable Java class to contain the entities primary
key. It is defined through the @EmbeddedId (https:/ / java. sun. com/ javaee/ 5/ docs/ api/
javax/ persistence/ EmbeddedId. html) annotation or <embedded-id> XML element. The
EmbeddedId's Embeddable class must define each id attribute for the entity using Basic
mappings. All attributes in the EmbeddedId's Embeddable are assumed to be part of the
primary key.
The EmbeddedId is also used as the structure passed to the EntityManager find() and
getReference() API. Some JPA products also use the EmbeddedId as a cache key to track
an object's identity. Because of this, it is required (depending on JPA product) to implement
an equals() and hashCode() method on the EmbeddedId. Ensure that the equals()
method checks each part of the primary key, and correctly uses equals for objects and ==
for primitives. Ensure that the hashCode() method will return the same value for two equal
objects.

TopLink / EclipseLink : Do not require the implementation of equals() or hashCode()
in the id class.

Example embedded id annotation
...
@Entity
public class Employee {
 @EmbeddedId
 private EmployeePK id
 ...
}

https://java.sun.com/javaee/5/docs/api/javax/persistence/EmbeddedId.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/EmbeddedId.html
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 30

Example embedded id XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <embedded-id class="org.acme.EmployeePK"/>
<entity/>
<embeddable name="EmployeePK" class="org.acme.EmployeePK" access="FIELD">
 <basic name="employeeId"/>
 <basic name="companyId"/>
 <basic name="departmentId"/>
<embeddable/>

Example embedded id class
...
@Embeddable
public class EmployeePK {
 @Basic
 private long employeeId

 @Basic
 private long companyId

 @Basic
 private long departmentId

 public EmployeePK(long employeeId, long companyId, long
departmentId) {
 this.departmentId = employeeId;
 this.departmentId = companyId;
 this.departmentId = departmentId;
 }

 public boolean equals(Object object) {
 if (object instanceof EmployeePK) {
 EmployeePK pk = (EmployeePK)object;
 return employeeId == pk.employeeId && companyId ==
pk.companyId && departmentId == pk.departmentId;
 } else {
 return false;
 }
 }

 public int hashCode() {
 return employeeId + companyId + departmentId;
 }
}

Java Persistence/ Print version 31

Primary Keys through OneToOne Relationships
A common model is to have a dependent object share the primary key of its parent. In the
case of a OneToOne the child's primary key is the same as the parent, and in the case of a
ManyToOne the child's primary key is composed of the parent's primary key and another
locally unique field.
Unfortunately JPA does not handle this model well, and things become complicated, so to
make your life a little easier you may consider defining a generated unique id for the child.
It would be simple if JPA allowed the @Id annotation on a OneToOne or ManyToOne
mapping, but it does not. JPA requires that all @Id mappings be Basic mappings, so if your
Id comes from a foreign key column through a OneToOne or ManyToOne mapping, you must
also define a Basic @Id mapping for the foreign key column. The reason for this is in part
that the Id must be a simple object for identity and caching purposes, and for use in the
IdClass or the EntityManager find() API.
Because you now have two mappings for the same foreign key column you must define
which one will be written to the database (it must be the Basic one), so the OneToOne or
ManyToOne foreign key must be defined to be read-only. This is done through setting the
JoinColumn attributes insertable and updatable to false, or by using the
@PrimaryKeyJoinColumn instead of the @JoinColumn.
A side effect of having two mappings for the same column is that you now have to keep the
two in synch. This is typically done through having the set method for the OneToOne
attribute also set the Basic attribute value to the target object's id. This can become very
complicated if the target object's primary key is a GeneratedValue, in this case you must
ensure that the target object's id has been assigned before relating the two objects.
Some times I think that JPA primary keys would be much simpler if they were just defined
on the entity using a collection of Columns instead of mixing them up with the attribute
mapping. This would leave you free to map the primary key field in any manner you desired.
A generic List could be used to pass the primary key to find() methods, and it would be
the JPA provider's responsibility for hashing and comparing the primary key correctly
instead of the user's IdClass. But perhaps for simple singleton primary key models the JPA
model is more straight forward.

TopLink / EclipseLink : Allow the primary key to be specified as a list of columns
instead of using Id mappings. This allows OneToOne and ManyToOne mapping foreign
keys to be used as the primary key without requiring a duplicate mapping. It also
allows the primary key to be defined through any other mapping type. This is set
through using a DescriptorCustomizer and the ClassDescriptor
addPrimaryKeyFieldName API.
Hibernate / Open JPA: Allows the @Id annotation to be used on a OneToOne or
ManyToOne mapping.

Example OneToOne id annotation
...
@Entity
public class Address {
 @Id
 @Column(name="OWNER_ID")
 private long ownerId;

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Hibernate
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Open_JPA

Java Persistence/ Print version 32

 @OneToOne
 @PrimaryKeyJoinColumn(name="OWNER_ID",
referencedColumnName="EMP_ID")
 private Employee owner;
 ...

 public void setOwner(Employee owner) {
 this.owner = owner;
 this.ownerId = owner.getId();
 }
 ...
}

Example OneToOne id XML
<entity name="Address" class="org.acme.Address" access="FIELD">
 <id name="ownerId">
 <column name="OWNER_ID"/>
 </id>
 <one-to-one name="owner">
 <primary-key-join-column name="OWNER_ID" referencedColumnName="EMP_ID"/>
 </one-to-one>
<entity/>

Example ManyToOne id annotation
...
@Entity
@IdClass(PhonePK.class)
public class Phone {
 @Id
 @Column(name="OWNER_ID")
 private long ownerId;

 @Id
 private String type;

 @ManyToOne
 @PrimaryKeyJoinColumn(name="OWNER_ID",
referencedColumnName="EMP_ID")
 private Employee owner;
 ...

 public void setOwner(Employee owner) {
 this.owner = owner;
 this.ownerId = owner.getId();
 }
 ...

Java Persistence/ Print version 33

}

Example ManyToOne id XML
<entity name="Address" class="org.acme.Address" access="FIELD">
 <id-class class="org.acme.PhonePK"/>
 <id name="ownerId">
 <column name="OWNER_ID"/>
 </id>
 <id name="type"/>
 <many-to-one name="owner">
 <primary-key-join-column name="OWNER_ID" referencedColumnName="EMP_ID"/>
 </many-to-one>
<entity/>

Advanced Sequencing
Concurrency and Deadlocks
One issue with table sequencing is that the sequence table can become a concurrency
bottleneck, even causing deadlocks. If the sequence ids are allocated in the same
transaction as the insert, this can cause poor concurrency, as the sequence row will be
locked for the duration of the transaction, preventing any other transaction that needs to
allocate a sequence id. In some cases the entire sequence table or the table page could be
locked causing even transactions allocating other sequences to wait or even deadlock. If a
large sequence pre-allocation size is used this becomes less of an issue, because the
sequence table is rarely accessed. Some JPA providers use a separate (non-JTA) connection
to allocate the sequence ids in, avoiding or limiting this issue. In this case, if you use a JTA
data-source connection, it is important to also include a non-JTA data-source connection in
your persistence.xml.

Running Out of Numbers
One paranoid delusional fear that programmers frequently have is running out of sequence
numbers. Since most sequence strategies just keep incrementing a number it is
unavoidable that you will eventually run out. However as long a large enough numeric
precision is used to store the sequence id this is not an issue. For example if you stored
your id in a NUMBER(5) column, this would allow 99,999 different ids, which on most
systems would eventually run out. However if you store your id in a NUMBER(10) column,
which is more typical, this would store 9,999,999,999 ids, or one id each second for about
300 years (longer than most databases exist). But perhaps your system will process a lot of
data, and (hopefully) be around a very long time. If you store your id in a NUMBER(20) this
would be 99,999,999,999,999,999,999 ids, or one id each millisecond for about
3,000,000,000 years, which is pretty safe.
But you also need to store this id in Java. If you store the id in a Java int, this would be a 32
bit number , which is 4,294,967,296 different ids, or one id each second for about 200
years. If you instead use a long, this would be a 64 bit number, which is
18,446,744,073,709,551,616 different ids, or one id each millisecond for about 600,000,000
years, which is pretty safe.

Java Persistence/ Print version 34

Guaranteeing Sequential Ids
Table sequencing also allows for truly sequential ids to be allocated. Sequence and identity
sequencing are non-transactional and typically cache values on the database, leading to
large gaps in the ids that are allocated. Typically this is not an issue and desired to have
good performance, however if performance and concurrency are less of a concern, and true
sequential ids are desired then a table sequence can be used. By setting the
allocationSize of the sequence to 1 and ensuring the sequence ids are allocated in the
same transaction of the insert, you can guarantee sequence ids without gaps (but generally
it is much better to live with the gaps and have good performance).

Customizing
JPA supports three different strategies for generating ids, however there are many other
methods. Normally the JPA strategies are sufficient, so you would only use a different
method in a legacy situation.
Sometimes the application has an application specific strategy for generating ids, such as
prefixing ids with the country code, or branch number. There are several ways to integrate
a customize ids generation strategy, the simplest is just define the id as a normal id and
have the application assign the id value when the object is created.
Some JPA products provide additional sequencing and id generation options, and
configuration hooks.

TopLink, EclipseLink : Several additional sequencing options are provided. A
UnaryTableSequence allows a single column table to be used. A QuerySequence allows
for custom SQL or stored procedures to be used. An API also exists to allow a user to
supply their own code for allocating ids.
Hibernate : A GUID id generation options is provided through the @GenericGenerator
annotation.

Primary Keys through Triggers
A database table can be defined to have a trigger that automatically assign its' primary key.
Generally this is normally not a good idea (although some DBAs may think it is), and it is
better to use a JPA provider generated sequence id, or assign the id in the application. The
main issue with the id being assigned in a trigger is that the application and object require
this value back. For non-primary key values assigned through triggers it is possible to
refresh the object after committing or flushing the object to obtain the values back.
However this is not possible for the id, as the id is required to refresh an object.
If you have an alternative way to select the id generated by the trigger, such as selecting
the object's row using another unique field, you could issue this SQL select after the insert
to obtain the id and set it back in the object. You could perform this select in a JPA
@PostPersist (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ PostPersist.
html) event. Some JPA providers may not allow/like a query execution during an event, they
also may not pick up a change to an object during an event callback, so there may be issues
with doing this. Also some JPA providers may not allow the primary key to be
un-assigned/null when not using a GeneratedValue, so you may have issues. Some JPA
providers have built-in support for returning values assigned in a trigger (or stored
procedure) back into the object.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Hibernate
https://java.sun.com/javaee/5/docs/api/javax/persistence/PostPersist.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/PostPersist.html

Java Persistence/ Print version 35

TopLink / EclipseLink : Provide a ReturningPolicy that allows for any field values
including the primary key to be returned from the database after an insert or update.
This is defined through the @ReturnInsert, @ReturnUpdate annotations, or the
<return-insert>, <return-update> XML elements in the eclipselink-orm.xml.

Primary Keys through Events
If the application generates its' own id instead of using a JPA GeneratedValue, it is
sometimes desirable to perform this id generation in a JPA event, instead of the application
code having to generate and set the id. In JPA this can be done through the @PrePersist
(https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ PrePersist. html) event.

No Primary Key
Sometimes your object or table has no primary key. The best solution in this case is
normally to add a generated id to the object and table. If you do not have this option,
sometimes there is a column or set of columns in the table that make up a unique value.
You can use this unique set of columns as your id in JPA. The JPA Id does not always have
to match the database table primary key constraint, nor is a primary key or a unique
constraint required.
If your table truly has no unique columns, then use all of the columns as the id. Typically
when this occurs the data is read-only, so even if the table allows duplicate rows with the
same values, the objects will be the same anyway, so it does not matter that JPA thinks they
are the same object. The issue with allowing updates and deletes is that there is no way to
uniquely identify the object's row, so all of the matching rows will be updated or deleted.
If your object does not have an id, but its' table does, this is fine. Make the object and
Embeddable object, embeddable objects do not have ids. You will need a Entity that
contains this Embeddable to persist and query it.

Inheritance

Inheritance is a fundamental concept of object-oriented programming and Java. Relational
databases have no concept of inheritance, so persisting inheritance in a database can be

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
https://java.sun.com/javaee/5/docs/api/javax/persistence/PrePersist.html
http://en.wikibooks.org/w/index.php?title=File:Inheritance.PNG

Java Persistence/ Print version 36

tricky. Because relational databases have no concept of inheritance, there is no standard
way of implementing inheritance in database, so the hardest part of persisting inheritance
is choosing how to represent the inheritance in the database.
JPA defines several inheritance mechanisms, mainly defined though the @Inheritance
(https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ Inheritance. html)
annotation or the <inheritance> element. There are three inheritance strategies defined
from the InheritanceType (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/
InheritanceType. html) enum, SINGLE_TABLE, TABLE_PER_CLASS and JOINED.
Single table inheritance is the default, and table per class is an optional feature of the JPA
spec, so not all providers may support it. JPA also defines a mapped superclass concept
defined though the @MappedSuperclass (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ MappedSuperclass. html) annotation or the <mapped-superclass> element. A
mapped superclass is not a persistent class, but allow common mappings to be define for its
subclasses.

Single Table Inheritance
Single table inheritance is the simplest and typically the best performing and best solution.
In single table inheritance a single table is used to store all of the instances of the entire
inheritance hierarchy. The table will have a column for every attribute of every class in the
hierarchy. A discriminator column is used to determine which class the particular row
belongs to, each class in the hierarchy defines its own unique discriminator value.

Example single table inheritance table
PROJECT (table)

ID PROJ_TYPE NAME BUDGET

1 L Accounting 50000

2 S Legal null

Example single table inheritance annotations
@Entity
@Inheritance
@DiscriminatorColumn(name="PROJ_TYPE")
@Table(name="PROJECT")
public abstract class Project {
 @Id
 private long id;
 ...
}

@Entity
@DiscriminatorValue("L");
public class LargeProject extends Project {
 private BigDecimal budget;
}

https://java.sun.com/javaee/5/docs/api/javax/persistence/Inheritance.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/InheritanceType.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/InheritanceType.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/MappedSuperclass.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/MappedSuperclass.html

Java Persistence/ Print version 37

@Entity
@DiscriminatorValue("S");
public class SmallProject extends Project {
}

Example single table inheritance XML
<entity name="Project" class="org.acme.Project" access="FIELD">
 <table name="PROJECT"/>
 <inheritance/>
 <discriminator-column name="PROJ_TYPE"/>
 <attributes>
 <id name="id"/>
 ...
 </attributes>
<entity/>

<entity name="LargeProject" class="org.acme.LargeProject" access="FIELD">
 <discriminator-value>L</discriminator-value>
 ...
<entity/>

<entity name="SmallProject" class="org.acme.SmallProject" access="FIELD">
 <discriminator-value>S</discriminator-value>
<entity/>

Common Problems

No class discriminator column
If you are mapping to an existing database schema, your table may not have a class
discriminator column. Some JPA providers do not require a class discriminator when
using a joined inheritance strategy, so this may be one solution. Otherwise you need
some way to determine the class for a row. Sometimes the inherited value can be
computed from several columns, or there is an discriminator but not a one to one
mapping from value to class. Some JPA providers provide extended support for this.
Another option is to create a database view that manufactures the discriminator
column, and then map your hierarchy to this view instead of the table. In general the
best solution is just to add a discriminator column to the table (truth be told, ALTER
TABLE is your best friend in ORM).

TopLink / EclipseLink : Support computing the inheritance discriminator through
Java code. This can be done through using a DescriptorCustomizer and the
ClassDescriptor's InheritancePolicy's setClassExtractor() method.
Hibernate : This can be accomplished through using the Hibernate
@DiscriminatorFormula annotation. This allows database specific SQL or
functions to be used to compute the discriminator value.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Hibernate

Java Persistence/ Print version 38

Non nullable attributes
Subclasses cannot define attributes as not allowing null, as the other subclasses must
insert null into those columns. A workaround to this issue is instead of defining a not
null constraint on the column, define a table constraint that check the discriminator
value and the not nullable value. In general the best solution is to just live without the
constraint (odds are you have enough constraints in your life to deal with as it is).

Joined, Multiple Table Inheritance
Joined inheritance is the most logical inheritance solution because it mirrors the object
model in the data model. In joined inheritance a table is defined for each class in the
inheritance hierarchy to store only the local attributes of that class. Each table in the
hierarchy must also store the object's id (primary key), which is only defined in the root
class. All classes in the hierarchy must share the same id attribute. A discriminator column
is used to determine which class the particular row belongs to, each class in the hierarchy
defines its own unique discriminator value.
Some JPA providers support joined inheritance with or without a discriminator column,
some required the discriminator column, and some do not support the discriminator
column. So joined inheritance does not seem to be fully standardized yet.

Hibernate : A discriminator column on joined inheritance is not supported. (http:/ /
opensource. atlassian. com/ projects/ hibernate/ browse/ ANN-140)

Example joined inheritance tables
PROJECT (table)

ID PROJ_TYPE NAME

1 L Accounting

2 S Legal

SMALLPROJECT (table)

ID

2

LARGEPROJECT (table)

ID BUDGET

1 50000

Example joined inheritance annotations
@Entity
@Inheritance(strategy=InheritanceType.JOINED)
@DiscriminatorColumn(name="PROJ_TYPE")
@Table(name="PROJECT")
public abstract class Project {
 @Id
 private long id;

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Hibernate
http://opensource.atlassian.com/projects/hibernate/browse/ANN-140
http://opensource.atlassian.com/projects/hibernate/browse/ANN-140

Java Persistence/ Print version 39

 ...
}

@Entity
@DiscriminatorValue("L");
@Table(name="LARGEPROJECT")
public class LargeProject extends Project {
 private BigDecimal budget;
}

@Entity
@DiscriminatorValue("S");
@Table(name="SMALLPROJECT")
public class SmallProject extends Project {
}

Example joined inheritance XML
<entity name="Project" class="org.acme.Project" access="FIELD">
 <table name="PROJECT"/>
 <inheritance strategy="JOINED"/>
 <discriminator-column name="PROJ_TYPE"/>
 <attributes>
 <id name="id"/>
 ...
 </attributes>
<entity/>

<entity name="LargeProject" class="org.acme.LargeProject" access="FIELD">
 <table name="LARGEPROJECT"/>
 <discriminator-value>L</discriminator-value>
 ...
<entity/>

<entity name="SmallProject" class="org.acme.SmallProject" access="FIELD">
 <table name="SMALLPROJECT"/>
 <discriminator-value>S</discriminator-value>
<entity/>

Common Problems

Poor query performance
The main disadvantage to the joined model is that to query any class join queries are
required. Querying the root or branch classes is even more difficult as either multiple
queries are required, or outer joins or unions are required. One solution is to use
single table inheritance instead, this is good if the classes have a lot in common, but if
it is a big hierarchy and the subclasses have little in common this may not be
desirable. Another solution is to remove the inheritance and instead use a
MappedSuperclass, but this means that you can no longer query or have relationships
to the class.

Java Persistence/ Print version 40

The poorest performing queries will be those to the root or branch classes. Avoiding
queries and relationships to the root and branch classes will help to alleviate this
burden. If you must query the root or branch classes there are two methods that JPA
providers use, one is to outer join all of the subclass tables, the second is to first query
the root table, then query only the required subclass table directly. The first method
has the advantage of only requiring one query, the second has the advantage of
avoiding outer joins which typically have poor performance in databases. You may
wish to experiment with each to determine which mechanism is more efficient in your
application and see if your JPA provider supports that mechanism. Typically the
multiple query mechanism is more efficient, but this generally depends on the speed of
your database connection.

TopLink / EclipseLink : Support both querying mechanisms. The multiple query
mechanism is used by default. Outer joins can be used instead through using a
DescriptorCustomizer and the ClassDescriptor's InheritancePolicy's
setShouldOuterJoinSubclasses() method.

Do not have/want a table for every subclass
Most inheritance hierarchies do not fit with either the joined or the single table
inheritance strategy. Typically the desired strategy is somewhere in between, having
joined tables in some subclasses and not in others. Unfortunately JPA does not directly
support this. One workaround is to map your inheritance hierarchy as single table, but
them add the additional tables in the subclasses, either through defining a Table or
SecondaryTable in each subclass as required. Depending on your JPA provider, this
may work (don't forget to sacrifice the chicken). If it does not work, then you may need
to use a JPA provider specific solution if one exists for your provider, otherwise live
within the constraints of having either a single table or one per subclass. You could
also change your inheritance hierarchy so it matches your data model, so if the
subclass does not have a table, then collapse its' class into its' superclass.

No class discriminator column
If you are mapping to an existing database schema, your table may not have a class
discriminator column. Some JPA providers do not require a class discriminator when
using a joined inheritance strategy, so this may be one solution. Otherwise you need
some way to determine the class for a row. Sometimes the inherited value can be
computed from several columns, or there is an discriminator but not a one to one
mapping from value to class. Some JPA providers provide extended support for this.
Another option is to create a database view that manufactures the discriminator
column, and then map your hierarchy to this view instead of the table.

TopLink / EclipseLink : Support computing the inheritance discriminator through
Java code. This can be done through using a DescriptorCustomizer and the
ClassDescriptor's InheritancePolicy's setClassExtractor() method.
Hibernate : This can be accomplished through using the Hibernate
@DiscriminatorFormula annotation. This allows database specific SQL or
functions to be used to compute the discriminator value.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Hibernate

Java Persistence/ Print version 41

Advanced

Table Per Class Inheritance
Table per class inheritance allows inheritance to be used in the object model, when it does
not exist in the data model. In table per class inheritance a table is defined for each
concrete class in the inheritance hierarchy to store all the attributes of that class and all of
its' superclasses. Be cautious using this strategy as it is optional in the JPA spec, and
querying root or branch classes can be very difficult and inefficient.

Example table per class inheritance tables
SMALLPROJECT (table)

ID NAME

2 Legal

LARGEPROJECT (table)

ID NAME BUDGET

1 Accounting 50000

Example table per class inheritance annotations
@Entity
@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)
public abstract class Project {
 @Id
 private long id;
 ...
}

@Entity
@Table(name="LARGEPROJECT")
public class LargeProject extends Project {
 private BigDecimal budget;
}

@Entity
@Table(name="SMALLPROJECT")
public class SmallProject extends Project {
}

Example table per class inheritance XML
<entity name="Project" class="org.acme.Project" access="FIELD">
 <inheritance strategy="TABLE_PER_CLASS"/>
 <attributes>
 <id name="id"/>
 ...
 </attributes>

Java Persistence/ Print version 42

<entity/>

<entity name="LargeProject" class="org.acme.LargeProject" access="FIELD">
 <table name="LARGEPROJECT"/>
 ...
<entity/>

<entity name="SmallProject" class="org.acme.SmallProject" access="FIELD">
 <table name="SMALLPROJECT"/>
<entity/>

Common Problems

Poor query performance
The main disadvantage to the table per class model is queries or relationships to the
root or branch classes become expensive. Querying the root or branch classes require
multiple queries, or unions. One solution is to use single table inheritance instead, this
is good if the classes have a lot in common, but if it is a big hierarchy and the
subclasses have little in common this may not be desirable. Another solution is to
remove the table per class inheritance and instead use a MappedSuperclass, but this
means that you can no longer query or have relationships to the class.

Issues with ordering and joins
Because table per class inheritance requires multiple queries, or unions, you cannot
join to, fetch join, or traverse them in queries. Also when ordering is used the results
will be ordered by class, then by the ordering. These limitations depend on your JPA
provider, some JPA provider may have other limitations, or not support table per class
at all as it is optional in the JPA spec.

Mapped Superclasses
Mapped superclass inheritance allows inheritance to be used in the object model, when it
does not exist in the data model. It is similar to table per class inheritance, but does not
allow querying, persisting, or relationships to the superclass. Its' main purpose is to allow
mappings information to be inherited by its' subclasses. The subclasses are responsible for
defining the table, id and other information, and can modify any of the inherited mappings.
A common usage of a mapped superclass is to define a common PersistentObject for
your application to define common behavoir and mappings such as the id and version. A
mapped superclass normally should be an abstract class. A mapped superclass is not an
Entity but is instead defined though the @MappedSuperclass (https:/ / java. sun. com/
javaee/ 5/ docs/ api/ javax/ persistence/ MappedSuperclass. html) annotation or the
<mapped-superclass> element.

https://java.sun.com/javaee/5/docs/api/javax/persistence/MappedSuperclass.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/MappedSuperclass.html

Java Persistence/ Print version 43

Example mapped superclass tables
SMALLPROJECT (table)

ID NAME

2 Legal

LARGEPROJECT (table)

ID PROJECT_NAME BUDGET

1 Accounting 50000

Example mapped superclass annotations
@MappedSuperclass
public abstract class Project {
 @Id
 private long id;
 @Column(name="NAME")
 private String name;
 ...
}

@Entity
@Table(name="LARGEPROJECT")
@AttributeOverride(name="name", column=@Column(name="PROJECT_NAME"))
public class LargeProject extends Project {
 private BigDecimal budget;
}

@Entity
@Table("SMALLPROJECT")
public class SmallProject extends Project {
}

Example mapped superclass XML
<mapped-superclass class="org.acme.Project" access="FIELD">
 <attributes>
 <id name="id"/>
 <basic name="name">
 <column name="NAME"/>
 </basic>
 ...
 </attributes>
<mapped-superclass/>

<entity name="LargeProject" class="org.acme.LargeProject" access="FIELD">
 <table name="LARGEPROJECT"/>
 <attribute-override>
 <column name="NAME"/>

Java Persistence/ Print version 44

 </attribute-override>
 ...
<entity/>

<entity name="SmallProject" class="org.acme.SmallProject" access="FIELD">
 <table name="SMALLPROJECT"/>
<entity/>

Common Problems

Cannot query, persist, or have relationships
The main disadvantage of mapped superclasses is that they cannot be queried or
persisted. You also cannot have a relationship to a mapped superclass. If you require
any of these then you must use another inheritance model, such as table per class,
which is virtually identical to a mapped superclass except it (may) not have these
limitations. Another alternative is to change your model such that your classes do not
have relationships to the superclass, such as changing the relationship to a subclass,
or removing the relationship and instead querying for its value by querying each
possible subclass and collecting the results in Java.

Subclass does not want to inherit mappings
Sometimes you have a subclass that needs to be mapped differently than its parent, or
is similar to its' parent but does not have one of the fields, or uses it very differently.
Unfortunately it is very difficult not to inherit everything from your parent in JPA, you
can override a mapping, but you cannot remove one, or change the type of mapping, or
the target class. If you define your mappings as properties (get methods), or through
XML, you may be able to attempt to override or mark the inherited mapping as
Transient, this may work depending on your JPA provider (don't forget to sacrifice a
chicken).
Another solution is to actually fix your inheritance in your object model. If you inherit
foo from Bar but don't want to inherit it, then remove it from Bar, if the other
subclasses need it, either add it to each, or create a FooBar subclass of Bar that has
the foo and have the other subclasses extend this.
Some JPA providers may provide ways to be less stringent on inheritance.

TopLink / EclipseLink : Allow a subclass remove a mapping, redefine a mapping,
or be entirely independent of its superclass. This can be done through using a
DescriptorCustomizer and removing the ClassDescriptor's mapping, or adding
a mapping with the same attribute name, or removing the InheritancePolicy.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 45

Embeddables

In an application object model some objects are considered independent, and others are
considered dependent parts of other objects. In UML a relationship to a dependent object is
consider an aggregate or composite association. In a relational database this kind of
relationship could be modeled in two ways, the dependent object could have its own table,
or its data could be embedded in the independent objects table.
In JPA a relationship where the target object's data is embedded in the source object's table
is considered an embedded relationship, and the target object is considered an Embeddable
object. Embeddable objects have different requirements and restrictions than Entity objects
and are defined by the @Embeddable (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ Embeddable. html) annotation or <embeddable> element.
An embeddable object cannot be directly persisted, or queried, it can only be persisted or
queried in the context of its parent. An embeddable object does not have an id or table. The
JPA spec does not support embeddable objects having relationships or inheritance,
although some JPA providers may allow this.
Relationships to embeddable objects are defined through the @Embedded (https:/ / java. sun.
com/ javaee/ 5/ docs/ api/ javax/ persistence/ Embedded. html) annotation or <embedded>
element. The JPA spec only allows references to embeddable objects, and does not support
collection relationships to embeddable objects, although some JPA providers may allow this.

http://en.wikibooks.org/w/index.php?title=File:Embeddable.PNG
https://java.sun.com/javaee/5/docs/api/javax/persistence/Embeddable.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Embeddable.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Embedded.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Embedded.html

Java Persistence/ Print version 46

Example of an Embeddable object annotations
@Embeddable
public class EmploymentPeriod {
 @Column(name="START_DATE")
 private java.sql.Date startDate;

 @Column(name="END_DATE")
 private java.sql.Date endDate;
 ...
}

Example of an Embeddable object XML
<embeddable class="org.acme.EmploymentPeriod" access="FIELD">
 <attributes>
 <basic name="startDate">
 <column name="START_DATE"/>
 </basic>
 <basic name="endDate">
 <column name="END_DATE"/>
 </basic>
 </attributes>
</embeddable>

Example of an embedded relationship annotations
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @Embedded
 private EmploymentPeriod period;
 ...
}

Example of an embedded relationship XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <embedded name="period"/>
 </attributes>
</entity>

Java Persistence/ Print version 47

Advanced

Sharing
An embeddable object can be shared between multiple classes. Consider a Name object,
that both an Employee and a User contain. Both Employee and a User have their own
tables, with different column names that they desire to store their name in. Embeddables
support this through allowing each embedded mapping to override the columns used in the
embeddable. This is done through the @AttributeOverride (https:/ / java. sun. com/ javaee/
5/ docs/ api/ javax/ persistence/ AttributeOverride. html) annotation or
<attribute-override> element.
Note that an embeddable cannot be shared between multiple instances. If you desire to
share an embeddable object instance, then you must make it an independent object with its
own table.

Example shared embeddable annotations
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name="startDate",
column=@Column(name="START_DATE")),
 @AttributeOverride(name="endDate", column=@Column(name="END_DATE"))
 })
 private Name name;
 ...
}

@Entity
public class User {
 @Id
 private long id;
 ...
 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name="startDate", column=@Column(name="SDATE")),
 @AttributeOverride(name="endDate", column=@Column(name="EDATE"))
 })
 private Name name;
 ...
}

https://java.sun.com/javaee/5/docs/api/javax/persistence/AttributeOverride.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/AttributeOverride.html

Java Persistence/ Print version 48

Example shared embeddable XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <embedded name="name">
 <attribute-override name="startDate">
 <column name="START_DATE"/>
 </attribute-override>
 <attribute-override name="endDate">
 <column name="END_DATE"/>
 </attribute-override>
 </embedded>
 </attributes>
</entity>
<entity name="User" class="org.acme.User" access="FIELD">
 <attributes>
 <id name="id"/>
 <embedded name="name">
 <attribute-override name="startDate">
 <column name="SDATE"/>
 </attribute-override>
 <attribute-override name="endDate">
 <column name="EDATE"/>
 </attribute-override>
 </embedded>
 </attributes>
</entity>

Embedded Ids
An EmbeddedId is an embeddable object that contains the Id for an entity.
See: Embedded Id

Nulls
An embeddable object's data is contained in several columns in its parent's table. Since
there is no single field value, there is no way to know if a parent's reference to the
embebbable is null. One could assume that if every field value of the embeddable is null,
then the reference should be null, but then there is no way to represent an embeddable
with all null values. JPA does not allow embeddables to be null, but some JPA providers
may support this.

TopLink / EclipseLink : Support an embedded reference being null. This is set through
using a DescriptorCustomizer and the AggregateObjectMapping
setIsNullAllowed API.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Identity_and_Sequencing%23Embedded_Id
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 49

Nesting
A nested embeddable is a relationship to an embeddable object from another embeddable.
The JPA spec only allows Basic relationships in an embeddable object, so nested
embeddables are not supported, however some JPA products may support them. Technically
there is nothing preventing the @Emdedded annotation being used in an embeddable object,
so this may just work depending on your JPA provider (don't forget to sacrifice a chicken).

TopLink / EclipseLink : Support embedded mappings from embeddables. The existing
@Embedded annotation or <embedded> element can be used.

A workaround to having a nested embeddable, and for embeddables in general is to use
property access, and add get/set methods for all of the attributes of the nested embeddable
object.

Example of using properties to define a nested embeddable
@Embeddable
public class EmploymentDetails {
 private EmploymentPeriod period
 private int yearsOfService;
 private boolean fullTime;

 public EmploymentDetails() {
 this.period = new EmploymentPeriod();
 }
 @Transient
 public EmploymentPeriod getEmploymentPeriod() {
 return period;
 }
 @Basic
 public Date getStartDate() {
 return getEmploymentPeriod().getStartDate();
 }
 public void setStartDate(Date startDate) {
 getEmploymentPeriod().setStartDate(startDate);
 }
 @Basic
 public Date getEndDate() {
 return getEmploymentPeriod().getEndDate();
 }
 public void setEndDate(Date endDate) {
 getEmploymentPeriod().setStartDate(endDate);
 }

}

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 50

Inheritance
Embeddable inheritance is when one embeddable class subclasses another embeddable
class. The JPA spec does not allow inheritance in embeddable objects, however some JPA
products may support this. Technically there is nothing preventing the
@DiscriminatorColumn annotation being used in an embeddable object, so this may just
work depending on your JPA provider (cross your fingers). Inheritance in embeddables is
always single table as an embeddable must live within its' parent's table. Generally
attempting to mix inheritance between embeddables and entities is not a good idea, but
may work in some cases.

TopLink / EclipseLink : Support inheritance with embeddables. This is set through
using a DescriptorCustomizer and the InheritancePolicy.

Relationships
A relationship is when an embeddable has a OneToOne or other such mapping to an entity.
The JPA spec only allows Basic mappings in an embeddable object, so relationships from
embeddables are not supported, however some JPA products may support them. Technically
there is nothing preventing the @OneToOne annotation or other relationships from being
used in an embeddable object, so this may just work depending on your JPA provider (cross
your fingers).

TopLink / EclipseLink : Support relationship mappings from embeddables. The existing
relationship annotations or XML elements can be used.

Relationships to embeddable objects from entities other than the embeddable's parent are
typically not a good idea, as an embeddable is a private dependent part of its parent.
Generally relationships should be to the embeddable's parent, not the embeddable.
Otherwise, it would normally be a good idea to make the embeddable an independent entity
with its own table. If an embeddable has a bi-directional relationship, such as a OneToMany
that requires an inverse ManyToOne the inverse relationship should be to the enbeddable's
parent.
A workaround to having a relationship from an embeddable is to define the relationship in
the embeddable's parent, and define property get/set methods for the relationship that set
the relationship into the embeddable.

Example of setting a relationship in an embeddable from its parent
@Entity
public class Employee {

 private EmploymentDetails details;

 @Embedded
 public EmploymentDetails getEmploymentDetails() {
 return details;
 }
 @OneToOne
 public Address getEmploymentAddress() {
 return getEmploymentDetails().getAddress();

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 51

 }
 public void setEmploymentAddress(Address address) {
 getEmploymentDetails().setAddress(address);
 }
}

One special relationship that is sometimes desired in an embeddable is a relationship to its
parent. JPA does not support this, but some JPA providers may.

Hibernate : Supports a @Parent annotation in embeddables to define a relationship to
its parent.

A workaround to having a parent relationship from an embeddable is to set the parent in
the property set method.

Example of setting a relationship in an embeddable to its parent
@Entity
public class Employee {

 private EmploymentDetails details;

 @Embedded
 public EmploymentDetails getEmploymentDetails() {
 return details;
 }
 public void setEmploymentDetails(EmploymentDetails details) {
 this.details = details;
 details.setParent(this);
 }
}

Collections
A collection of embeddable objects is similar to a OneToMany except the target objects are
embeddables and have no Id. This allows for a OneToMany to be defined without a inverse
ManyToOne, as the parent is responsible for storing the foreign key in the target object's
table. JPA 1.0 does not support collections of embeddable objects, but some JPA providers
support this.

TopLink / EclipseLink : Support collections of embeddables. This is set through using a
DescriptorCustomizer and the AggregateCollectionMapping.
Hibernate : Supports collections of embeddables through the @CollectionOfElements
annotation.

Typically the primary key of the target table will be composed of the parent's primary key,
and some unique field in the embeddable object. The embeddable should have a unique
field within its parent's collection, but does not need to be unique for the entire class. It
could still have a unique id and still use sequencing, or if it has no unique fields, its id could
be composed of all of its fields. The embeddable collection object will be different than a
typical embeddable object as it will not be stored in the parent's table, but in its own table.
Embeddables are strictly privately owned objects, deletion of the parent will cause deletion

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Hibernate
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Hibernate

Java Persistence/ Print version 52

of the embeddables, and removal from the embeddable collection should cause the
embeddable to be deleted. Embeddables cannot be queried directly, and are not
independent objects as they have no Id.

Querying
Embeddable objects cannot be queried directly, but they can be queried in the context of
their parent. Typically it is best to select the parent, and access the embeddable from the
parent. This will ensure the embeddable is registered with the persistence context. If the
embeddable is selected in a query, the resulting objects will be detached, and changes will
not be tracked.

Example of querying an embeddable
SELECT employee.period from Employee employee where
employee.period.endDate = :param

Locking
Locking is perhaps the most ignored persistence consideration. Most applications tend to
ignore thinking about concurrency issues during development, and then smush in a locking
mechanism before going into production. Considering the large percentage of software
projects that fail or are canceled, or never achieve a large user base, perhaps this is logical.
However, locking and concurrency is a critical or at least a very important issue for most
applications, so probably should be something considered earlier in the development cycle.
If the application will have concurrent writers to the same objects, then a locking strategy
is critical so that data corruption can be prevented. There are two strategies for preventing
concurrent modification of the same object/row; optimistic and pessimistic locking.
Technically there is a third strategy, ostrich locking, or no locking, which means put your
head in the sand and ignore the issue.
There are various ways to implement both optimistic and pessimistic locking. JPA has
support for version optimistic locking, but some JPA providers support other methods of
optimistic locking, as well as pessimistic locking.
Locking and concurrency can be a confusing thing to consider, and there are a lot of
misconcepts out there. Correctly implementing locking in your application typically involves
more than setting some JPA or database configuration option (although that is all many
applications that think they are using locking do). Locking may also involve application
level changes, and ensuring other applications accessing the database also do so correctly
for the locking policy being used.

Optimistic Locking
Optimistic locking assumes that the data will not be modified between when you read the
data until you write the data. This is the most common style of locking used and
recommended in today's persistence solutions. The strategy involves checking that one or
more values from the original object read, are still the same when updating it. This verifies
that the object has not changed by another user in between the read and the write.

Java Persistence/ Print version 53

JPA supports using an optimistic locking version field that gets updated on each update.
The field can either be numeric or a timestamp value. A numeric value is recommended as a
numeric value is more precise, portable, performant and easier to deal with than a
timestamp.
The @Version (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ Version.
html) annotation or <version> element is used to define the optimistic lock version field.
The annotation is defined on the version field or property for the object, similar to an Id
mapping. The object must contain an attribute to store the version field.
The object's version attribute is automatically updated by the JPA provider, and should not
normally be modified by the application. The one exception is if the application reads the
object in one transaction, sends the object to a client, and updates/merges the object in
another transaction. In this case the application must ensure that the original object
version is used, otherwise any changes in between the read and write will not be detected.
The EntityManager merge() API will always merge the version, so the application is only
responsible for this if manually merging.
When a locking contention is detected an OptimisticLockException (https:/ / java. sun.
com/ javaee/ 5/ docs/ api/ javax/ persistence/ OptimisticLockException. html) will be thrown.
This could be wrapped insider a RollbackException, or other exceptions if using JTA, but it
should be set as the cause of the exception. The application can handle the exception, but
should normally report the error to the user, and let them determine what to do.

Example of Version annotation
@Entity
public abstract class Employee{
 @Id
 private long id;
 @Version
 private long version;
 ...
}

Common Locking Mistakes, Questions and Problems

Not sending version to client, only locking on the server
Probably the most common mistake in locking in general is locking the wrong section
of code. This is true no matter what form of locking is used, whether it be optimistic or
pessimistic. The basic scenario is:

1. User requests some data, the server reads the data from the database and sends it to
the user in their client (doesn't matter if the client is html, rmi, web service).

2. The user edits the data in the client.
3. The user submits the data back to the server.
4. The server begins a transaction, reads the object, merges the data and commits the

transaction.
The issues is that the original data was read in step 1, but the lock was not obtained
until step 4, so any changes made to the object in between steps 1 and 4 would not
result in a conflict. This means there is little point to using any locking.

https://java.sun.com/javaee/5/docs/api/javax/persistence/Version.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Version.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/OptimisticLockException.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/OptimisticLockException.html

Java Persistence/ Print version 54

A key point is that when using database pessimistic locking or database transaction
isolation, this will always be the case, the database locks will only occur in step 4, and
any conflicts will not be detected. This is the main reason why using database locking
does not scale to web applications, for the locking to be valid, the database transaction
must be started at step 1 and not committed until step 4. This means the a live
database connection and transaction must be held open while waiting for the web
client, as well as locks, since there is no guarantee that the web client will not sit on
the data for hours, go to lunch, or disappear of the face of the earth, holding database
resources and locking data for all other users can be very undesirable.
For optimistic locking the solution is relatively simple, the object's version must be
sent to the client along with the data (or kept in the http session). When the user
submits the data back, the original version must be merged into the object read from
the database, to ensure that any changes made between step 1 and 4 will be detected.

Example of Version XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <version name="version"/>
 ...
 </attributes>
<entity/>

Handling optimistic lock exceptions
Unfortunately programmers can frequently be too clever for their own good. The first
issue that comes up when using optimistic locking is what to do when an
OptimisticLockException occurs. The typical response of the friendly neighborhood
super programmer, is to automatically handle the exception. They will just create a
new transaction, refresh the object to reset its version, and merge the data back into
the object and re-commit it. Presto problem solved, or is it?
This actually defeats the whole point of locking in the first place. If this is what you
desire, you may as well use no locking. Unfortunately, the OptimisticLockException
should rarely be automatically handled, and you really need to bother the user about
the issue. You should report the conflict to the user, and either say "your sorry but an
edit conflict occurred and they are going to have to redo their work", or in the best
case, refresh the object and present the user with the current data and the data that
they submitted and help them merge the two if appropriate.
Some automated merge tools will compare the two conflicting versions of the data and
if none of the individual fields conflict, then the data will just be automatically merged
without the user's aid. This is what most software version control systems do.
Unfortunately the user is typically better able to decide when something is a conflict
than the program, just because two versions of the .java file did not change the same
line of code does not mean there was no conflict, the first user could have deleted a
method that the other user added a method to reference, and several other possible
issues that cause the typically nightly build to break every so often.

Java Persistence/ Print version 55

Paranoid Delusionment
Locking can prevent most concurrency issues, but be careful of going overboard in
over analyzing to death every possible hypothetical occurrence. Sometimes in an
concurrent application (or any software application) bad stuff can happen. Users are
pretty used to this by now, and I don't think anyone out there thinks computer are
perfect.
A good example is a source code control system. Allowing users to overwrite each
other changes is a bad thing; so most systems avoid this through versioning the source
files. If a user submits changes to a file that originated from a older version than the
current version, the source code control system will raise a conflict and make the user
merge the two files. This is essentially optimistic locking. But what if one user
removes, or renames a method in one file, then another user adds a new method or
call in another file to that old method. No source code control system that I know of
will detect this issue, it is a conflict and will cause the build to break. The solution to
this is to start locking or checking the lock on every file in the system (or at least every
possible related file). Similar to using optimistic read locking on every possible related
object, or pessimistically locking every possible related object. This could be done, but
would probably be very expensive, and more importantly would now raise possible
conflicts every time a user checked in, so would be entirely useless.
So, in general be careful of being too paranoid, such that you sacrifice the usability of
your system.

Other applications accessing same data
Any form of locking that is going to work requires that all applications accessing the
same data follow the same rules. If you use optimistic locking in one application, but
no locking in another accessing the same data, they will still conflict. One fake solution
is to configure an update trigger to always increment the version value (unless
incremented in the update). This will allow the new application to avoid overwriting
the old application's changes, but the old application will still be able to overwrite the
new application's changes. This still may be better than no locking at all, and perhaps
the old application will eventually go away.
One common misconception is that if you use pessimistic locking, instead of adding a
version field, you will be ok. Again pessimistic locking requires that all applications
accessing the same data use the same form of locking. The old application can still
read data (without locking), then update the data after the new application reads,
locks, and updates the same data, overwriting its changes.

Java Persistence/ Print version 56

Isn't database transaction isolation all I need?
Possibly, but most likely not. Most databases default to read committed transaction
isolation. This means that you will never see uncommitted data, but this does not
prevent concurrent transactions from overwriting the same data.

1. Transaction A reads row x.
2. Transaction B reads row x.
3. Transaction A writes row x.
4. Transaction B writes row x (and overwrites A's changes).
5. Both commit successfully.

This is the case with read committed, but with serializable this conflict would not
occur. With serializable either Transaction B would lock on the select for B and wait
(perhaps a long time) until Transaction A commits. In some databases Transaction A
may not wait, but would fail on commit. However, even with serializable isolation the
typical web application would still have a conflict. This is because each server request
operates in a different database transaction. The web client reads the data in one
transaction, then updates it in another transaction. So optimistic locking is really the
only viable locking option for the typical web application. Even if the read and write
occurs in the same transaction, serializable is normally not the solution because of
concurrency implications and deadlock potential.
See Serializable Transaction Isolation

What happens if I merge an object that was deleted by another user?
What should happen is the merge should trigger an OptimisticLockException
because the object has a version that is not null and greater than 0, and the object
does not exist. But this is probably JPA provider specific, some may re-insert the object
(this would occur without locking), or throw a different exception.
If you called persist instead of merge, then the object would be re-inserted.

What if my table doesn't have a version column?
The best solution is probably just to add one. Field locking is another solution, as well
as pessimistic locking in some cases.
See Field Locking

What about relationships?
See Cascaded Locking

Can I use a timestamp?
See Timestamp Locking

Java Persistence/ Print version 57

Do I need a version in each table for inheritance or multiple tables?
The short answer is no, only in the root table.
See Multiple Versions

Advanced

Timestamp Locking
Timestamp version locking is supported by JPA and is configured the same as numeric
version locking, except the attribute type will be a java.sql.Timestamp or other date/time
type. Be cautious in using timestamp locking as timestamps have different levels of
precision in different databases, and some database do not store a timestamp's
milliseconds, or do not store them precisely. In general timestamp locking is less efficient
than numeric version locking, so numeric version locking is recommended.
Timestamp locking is frequently used if the table already has a last updated timestamp
column, and is also a convenient way to auto update a last updated column. The timestamp
version value can be more useful than a numeric version, as it includes the relevant
information on when the object was last updated.
The timestamp value in timestamp version locking can either come from the database, or
from Java (mid-tier). JPA does not allow this to be configured, however some JPA providers
may provide this option. Using the database's current timestamp can be very expensive, as
it requires a database call to the server.

Multiple Versions
An object can only have one version in JPA. Even if the object maps to multiple tables, only
the primary table will have the version. If any fields in any of the tables changes, the
version will be updated. If you desire multiple versions, you may need to map multiple
version attributes in your object and manually maintain the duplicate versions, perhaps
through events. Technically there is nothing preventing your from annotating multiple
attributes with @Version, and potentially some JPA providers may support this (don't forget
to sacrifice a chicken).

Cascaded Locking
Locking objects is different than locking rows in the database. An object can be more
complex than a simple row; an object can span multiple tables, have inheritance, have
relationships, and have dependent objects. So determining when an object has changed and
needs to update its' version can be more difficult than determining when a row has
changed.
JPA does define that when any of the object's tables changes the version is updated.
However it is less clear on relationships. If Basic, Embedded, or a foreign key relationship
(OneToOne, ManyToOne) changes, the version will be updated. But what about OneToMany,
ManyToMany, and a target foreign key OneToOne? For changes to these relationships the
update to the version may depend on the JPA provider.
What about changes made to dependent objects? JPA does not have a cascade option for
locking, and has no direct concept of dependent objects, so this is not an option. Some JPA
providers may support this. One way to simulate this is to use write locking. JPA defines the

Java Persistence/ Print version 58

EntityManager lock() (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/
EntityManager. html#lock(java. lang. Object, javax. persistence. LockModeType)) API. You
can define a version only in your root parent objects, and when a child (or relationship) is
changed, you can call the lock API with the parent to cause a WRITE lock. This will cause
the parent version to be updated. You may also be able to automate this through
persistence events.
Usage of cascaded locking depends on your application. If in your application you consider
one user updating one dependent part of an object, and another user updating another part
of the object to be a locking contention, then this is what you want. If your application does
not consider this to be a problem, then you do not want cascaded locking. One of the
advantages of cascaded locking is you have fewer version fields to maintain, and only the
update to the root object needs to check the version. This can make a difference in
optimizations such as batch writing, as the dependent objects may not be able to be
batched if they have their own version that must be checked.

TopLink / EclipseLink : Support cascaded locking through their @OptimisticLocking
and @PrivateOwned annotations and XML.

Field Locking
If you do not have a version field in your table, optimistic field locking is another solution.
Field locking involves comparing certain fields in the object when updating. If those fields
have changed, then the update will fail. JPA does not support field locking, but some JPA
providers do support it.
Field locking can also be used when a finer level of locking is desired. For example if one
user changes the object's name and another changes the objects address, you may desire
for these updates to not conflict, and only desire optimistic lock errors when users change
the same fields. You may also only be concerned about conflicts in changes to certain fields,
and not desire lock errors from conflicts in the other fields.
Field locking can also be used on legacy schemas, where you cannot add a version column,
or to integrate with other applications accessing the same data which are not using
optimistic locking (note if the other applications are not also using field locking, you can
only detect conflicts in one direction).
There are several types of field locking:
• All fields compared in the update - This can lead to a very big where clause, but will

detect any conflicts.
• Selected fields compared in the update - This is useful if conflicts in only certain fields

are desired.
• Changed fields compared in the update - This is useful if only changes to the same fields

are considered to be conflicts.
If your JPA provider does not support field locking, it is difficult to simulate, as it requires
changes to the update SQL. Your JPA provider may allow overriding the update SQL, in
which case, All or Selected field locking may be possible (if you have access to the
original values), but Changed field locking is more difficult because the update must be
dynamic. Another way to simulate field locking is to flush you changes, then refresh the
object using a separate EntityManager and connection and compare the current values
with your original object.

https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#lock(java.lang.Object,%20javax.persistence.LockModeType)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#lock(java.lang.Object,%20javax.persistence.LockModeType)
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 59

When using field locking it is important to keep the original object that was read. If you
read the object in one transaction and send it to a client, then update in another, you are
not really locking. Any changes made between the read and write will not be detected. You
must keep the original object read managed in an EntityManager for your locking to have
any effect.

TopLink / EclipseLink : Support field locking through their @OptimisticLocking
annotation and XML.

Read and Write Locking
It is sometimes desirable to lock something that you did not change. Normally this is done
when making a change to one object, that is based on the state of another object, and you
wish to ensure that the other object represents the current state of the database at the
point of the commit. This is what serializable transaction isolation gives you, but optimistic
read and write locking allow this requirement to be met declaratively and optimistically
(and without deadlock, concurrency, and open transaction issues).
JPA supports read and write locks through the EntityManager.lock() (https:/ / java. sun.
com/ javaee/ 5/ docs/ api/ javax/ persistence/ EntityManager. html#lock(java. lang. Object,
javax. persistence. LockModeType)) API. The LockModeType (https:/ / java. sun. com/
javaee/ 5/ docs/ api/ javax/ persistence/ LockModeType. html) argument can either be READ
or WRITE. A READ lock will ensure that the state of the object does not change on commit. A
WRITE lock will ensure that this transaction conflicts with any other transaction changing or
locking the object. Essentially the READ lock check the optimistic version field, and the
WRITE checks and increments it.

Example of Using the Lock API
Employee employee = entityManager.find(Employee.class, id);
employee.setSalary(employee.getManager().getSalary() / 2);
entityManager.lock(employee.getManager(), LockModeType.READ);

Write locking can also be used to provide object-level locks. If you desire for a change to a
dependent object to conflict with any change to the parent object, or any other of its
dependent objects, this can be done through write locking. This can also be used to lock
relationships, when you change a OneToMany or ManyToMany relationship you can also
force the parent's version to be incremented.

Example of Using the Lock API for Cascaded Locks
Employee employee = entityManager.find(Employee.class, id);
employee.getAddress().setCity("Ottawa");
entityManager.lock(employee, LockModeType.WRITE);

No Locking a.k.a Ostrich Locking
Conceptually people may scoff and be alarmed at the thought of no locking, but it probably
the most common form of locking in use. Some call it Ostrich locking as the strategy is to
stick your head in the sand and ignore the issue. Most prototypes or small applications
frequently do not have the requirement or in most cases the need for locking, and handling
what to do when a locking contention does occur is beyond the scope of the application, so
best to just ignore the issue.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#lock(java.lang.Object,%20javax.persistence.LockModeType)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#lock(java.lang.Object,%20javax.persistence.LockModeType)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#lock(java.lang.Object,%20javax.persistence.LockModeType)
https://java.sun.com/javaee/5/docs/api/javax/persistence/LockModeType.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/LockModeType.html

Java Persistence/ Print version 60

In general it is probably best in JPA to enable optimistic locking always, as it is fairly simple
to do, as least in concept, but what does occur on a conflict without any form of locking?
Essentially it is last in wins, so if two users edit the same object, at the same time, the last
one to commit will have their changes reflected in the database. This is true, at least for
users editing the same fields, but if two users edit different fields in the same object, it
depends on the JPA implementation. Some JPA providers only update exactly the fields that
were changed, where as other update all fields in the object. So in one case the first user's
changes would be overridden, but in the second they would not.

Pessimistic Locking
Pessimistic locking means acquiring a lock on the object before you begin to edit the object,
to ensure that no other users are editing the object. Pessimistic locking is typically
implemented through using database row locks, such as through the SELECT ... FOR
UPDATE SQL syntax. The data is read and locked, the changes are made and the transaction
is committed, releasing the locks.
JPA does not support pessimistic locking, but some JPA providers do. It is also possible to
use JPA native SQL queries to issue SELECT ... FOR UPDATE and use pessimistic locking.
When using pessimistic locking you must ensure that the object is refreshed when it is
locked, locking a potentially stale object is of no use. The SQL syntax for pessimistic locking
is database specific, and different databases have different syntax and levels of support, so
ensure your database properly supports your locking requirements.

TopLink / EclipseLink : Support pessimistic locking through the
"eclipselink.pessimistic-lock" query hint.

The main issues with pessimistic locking is they use database resources, so require a
database transaction and connection to be held open for the duration of the edit. This is
typically not desirable for interactive web applications. Pessimistic locking can also have
concurrency issues and cause deadlocks. The main advantages of pessimistic locking is that
once the lock is obtained, it is fairly certain that the edit will be successful. This can be
desirable in highly concurrent applications, where optimistic locking may cause too many
optimistic locking errors.
There are other ways to implement pessimistic locking, it could be implemented at the
application level, or through serializable transaction isolation.
Application level pessimistic locking can be implemented through adding a locked field to
your object. Before an edit you must update the field to locked (and commit the change).
Then you can edit the object, and set the locked field back to false. To avoid conflicts in
acquiring the lock, you should also use optimistic locking, to ensure the lock field is not
updated to true by another user at the same time.

Serializable Transaction Isolation
Serializable transaction isolation guarantees that anything read in the transaction will not
be updated by any other user. Through using serializable transaction isolation and ensuring
the data being edited is read in the same transaction, you can achieve pessimistic locking.
It is important to ensure the objects are refreshed from the database in the transaction, as
editing cached or potentially stale data defeats the point of locking.
Serializable transaction isolation can typically be enabled on the database, some databases
even have this as the default. It can also be set on the JDBC Connection, or through native

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 61

SQL, but this is database specific and different databases have different levels of support.
The main issues with serializable transaction isolation are the same as using SELECT ...
FOR UPDATE (see above for the gory details), in addition everything read is locked, so you
cannot decide to only lock certain objects at certain times, but lock everything all the time.
This can be a major concurrency issue for transactions with common read-only data, and
can lead to deadlocks.
How database implement serializable transaction isolation differs between databases. Some
databases (such as Oracle) can perform serializable transaction isolation in more of an
optimistic sense, than the typically pessimistic implementation. Instead of each transaction
requiring locks on all the data as it is read, the row versions are not checked until the
transaction is committed, if any of the data changed an exception is thrown and the
transaction is not allowed to commit.

Basics
A basic attribute is one where the attribute class is a simple type such as String, Number,
Date or a primitive. A basic attribute's value can map directly to the column value in the
database. The following table summarizes the basic types and the database types they map
to.

Java type Database type

String (char, char[]) VARCHAR (CHAR, VARCHAR2, CLOB,
TEXT)

Number (BigDecimal, BigInteger, Integer, Double, Long, Float,
Short, Byte)

NUMERIC (NUMBER, INT, LONG, FLOAT,
DOUBLE)

int, long, float, double, short, byte NUMERIC (NUMBER, INT, LONG, FLOAT,
DOUBLE)

byte[] VARBINARY (BINARY, BLOB)

boolean (Boolean) BOOLEAN (BIT, SMALLINT, INT, NUMBER)

java.util.Date TIMESTAMP (DATE, DATETIME)

java.sql.Date DATE (TIMESTAMP, DATETIME)

java.sql.Time TIME (TIMESTAMP, DATETIME)

java.sql.Timestamp TIMESTAMP (DATETIME, DATE)

java.util.Calendar TIMESTAMP (DATETIME, DATE)

java.lang.Enum NUMERIC (VARCHAR, CHAR)

java.util.Serializable VARBINARY (BINARY, BLOB)

In JPA a basic attribute is mapped through the @Basic (https:/ / java. sun. com/ javaee/ 5/
docs/ api/ javax/ persistence/ Basic. html) annotation or the <basic> element. The types
and conversions supported depend on the JPA implementation and database platform. Some
JPA implementations may support conversion between many different data-types or
additional types, or have extended type conversion support, see the advanced section for
more details. Any basic attribute using a type that does not map directly to a database type
can be serialized to a binary database type.
The easiest way to map a basic attribute in JPA is to do nothing. Any attributes that have no
other annotations and do not reference other entities will be automatically mapped as

https://java.sun.com/javaee/5/docs/api/javax/persistence/Basic.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Basic.html

Java Persistence/ Print version 62

basic, and even serialized if not a basic type. The column name for the attribute will be
defaulted, named the same as the attribute name, as uppercase. Sometimes auto-mapping
can be unexpected if you have an attribute in your class that you did not intend to have
persisted. You must mark any such non-persistent fields using the @Transient (https:/ /
java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ Transient. html) annotation or
<transient> element.
Although auto-mapping makes rapid prototyping easy, you typically reach a point where
you want control over your database schema. To specify the column name for a basic
attribute the @Column (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/
Column. html) annotation or <column> element is used. The column annotation also allows
for other information to be specified such as the database type, size, and some constraints.

Example of basic mapping annotations
@Entity
public class Employee {
 // Id mappings are also basic mappings.
 @Id
 @Column(name="ID")
 private long id;
 @Basic
 @Column(name="F_NAME")
 private String firstName;
 // The @Basic is not required in general because it is the default.
 @Column(name="L_NAME")
 private String lastName;
 // Any un-mapped field will be automatically mapped as basic and
column name defaulted.
 private BigDecimal salary;
 // Non-persistent fields must be marked as transient.
 @Transient
 private EmployeeService service;
 ...
}

Common Problems

Translating Values
See Conversion

Example of basic mapping XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id">
 <column name="ID"/>
 </id>
 <basic name="firstName">

https://java.sun.com/javaee/5/docs/api/javax/persistence/Transient.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Transient.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Column.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Column.html

Java Persistence/ Print version 63

 <column name="F_NAME"/>
 </basic>
 <basic name="lastName">
 <column name="L_NAME"/>
 </basic>
 <transient name="service"/>
 </attributes>
</entity>

Truncated Data
A common issue is that data, such as Strings, written from the object are truncated
when read back from the database. This is normally caused by the column length not
being large enough to handle the object's data. In Java there is no maximum size for a
String, but in a database VARCHAR field, there is a maximum size. You must ensure that
the length you set in your column when you create the table is large enough to handle
any object value. For very large Strings CLOBs can be used, but in general CLOBs should
not be over used, as they are less efficient than a VARCHAR.
If you use JPA to generate your database schema, you can set the column length
through the Column annotation or element, see Column Definition and Schema
Generation.

How to map timestamp with timezones?
See Timezones

How to map XML data-types?
See Custom Types

How to map Struct and Array types?
See Custom Types

How to map custom database types?
See Custom Types

How to excluded fields from INSERT or UPDATE statements, or
default values in triggers?

See Insertable, Updatable

Java Persistence/ Print version 64

Advanced

Temporal, Dates, Times, Timestamps and Calendars
Dates, times, and timestamps are common types both in the database and in Java, so in
theory mappings these types should be simple, right? Well sometimes this is the case and
just a normal Basic mapping can be used, however sometimes it becomes more complex.
Some databases do not have DATE and TIME types, only TIMESTAMP fields, however some
do have separate types, and some just have DATE and TIMESTAMP. Originally in Java 1.0,
Java only had a java.util.Date type, which was both a date, time and milliseconds. In
Java 1.1 this was expanded to support the common database types with java.sql.Date,
java.sql.Time, and java.sql.Timestamp, then to support internationalization Java created
the java.util.Calendar type and virtually deprecated (almost all of the methods) the old
date types (which JDBC still uses).
If you map a Java java.sql.Date type to a database DATE, this is just a basic mapping and
you should not have any issues (ignore Oracle's DATE type that is/was a timestamp for
now). You can also map java.sql.Time to TIME, and java.sql.Timestamp to TIMESTAMP.
However if you have a java.util.Date or java.util.Calendar in Java and wish to map it
to a DATE or TIME, you may need to indicate that the JPA provider perform some sort of
conversion for this. In JPA the @Temporal (https:/ / java. sun. com/ javaee/ 5/ docs/ api/
javax/ persistence/ Temporal. html) annotation or <temporal> element is used to map this.
You can indicate that just the DATE or TIME portion of the date/time value be stored to the
database. You could also use Temporal to map a java.sql.Date to a TIMESTAMP field, or
any other such conversion.

Example of temporal annotation
@Entity
public class Employee {
 ...
 @Basic
 @Temporal(DATE)
 private Calendar startDate;
 ...
}

Example of temporal XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 ...
 <basic name="startDate">
 <temporal>DATE</temporal>
 </basic>
 </attributes>
</entity>

https://java.sun.com/javaee/5/docs/api/javax/persistence/Temporal.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Temporal.html

Java Persistence/ Print version 65

Milliseconds
The precision of milliseconds is different for different temporal classes and database types,
and on different databases. The java.util.Date and Calendar classes support
milliseconds. The java.sql.Date and java.sql.Time classes do not support milliseconds.
The java.sql.Timestamp class supports nanoseconds.
On many databases the TIMESTAMP type supports milliseconds. On Oracle prior to Oracle 9,
there was only a DATE type, which was a date and a time, but had no milliseconds. Oracle 9
added a TIMESTAMP type that has milliseconds (and nanoseconds), and now treats the old
DATE type as only a date, so be careful using it as a timestamp. MySQL has DATE, TIME and
DATETIME types. DB2 has a DATE, TIME and TIMESTAMP types, the TIMESTAMP supports
microseconds. Sybase and SQL Server just have a DATETIME type which has milliseconds,
but at least on some versions has precision issues, it seems to store an estimate of the
milliseconds, not the exact value.
If you use timestamp version locking you need to be very careful of your milliseconds
precision. Ensure your database supports milliseconds precisely otherwise you may have
issues, especially if the value is assigned in Java, then differs what gets stored on the
database, which will cause the next update to fail for the same object.
In general I would not recommend using a timestamp and as primary key or for version
locking. There are too many database compatibility issues, as well as the obvious issue of
not supporting two operations in the same millisecond.

Timezones
Temporals become a lot more complex when you start to consider time zones,
internationalization, eras, locals, day-light savings time, etc. In Java only Calendar
supports time zones. Normally a Calendar is assumed to be in the local time zone, and is
stored and retrieved from the database with that assumption. If you then read that same
Calendar on another computer in another time zone, the question is if you will have the
same Calendar or will you have the Calendar of what the original time would have been in
the new time zone? It depends on if the Calendar is stored as the GMT time, or the local
time, and if the time zone was stored in the database.
Some databases support time zones, but most database types do not store the time zone.
Oracle has two special types for timestamps with time zones, TIMESTAMPTZ (time zone is
stored) and TIMESTAMPLTZ (local time zone is used). Some JPA providers may have
extended support for storing Calendar objects and time zones.

TopLink, EclipseLink : Support the Oracle TIMESTAMPTZ and TIMESTAMPLTZ types
using the @TypeConverter annotation and XML.

Forum Posts
• Investigation of storing timezones in MySQL (http:/ / www. nabble. com/

MySQL's-datetime-and-time-zones--td21006801. html)

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://www.nabble.com/MySQL%27s-datetime-and-time-zones--td21006801.html
http://www.nabble.com/MySQL%27s-datetime-and-time-zones--td21006801.html

Java Persistence/ Print version 66

Enums
Java Enums (https:/ / java. sun. com/ java/ 5/ docs/ api/ java/ lang/ Enum. html) are typically
used as constants in an object model. For example an Employee may have a gender of
enum type Gender (MALE, FEMALE).
By default in JPA an attribute of type Enum will be stored as a Basic to the database, using
the integer Enum values as codes (i.e. 0, 1). JPA also defines an @Enumerated (https:/ /
java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ Enumerated. html) annotation and
<enumerated> element (on a <basic>) to define an Enum attribute. This can be used to
store the Enum as the STRING value of its name (i.e. "MALE", "FEMALE").
For translating Enum types to values other than the integer or String name, such as
character constants, see Translating Values.

Example of enumerated annotation
public enum Gender {
 MALE,
 FEMALE
}

@Entity
public class Employee {
 ...
 @Basic
 @Enumerated(STRING)
 private Gender gender;
 ...
}

Example of enumerated XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 ...
 <basic name="gender">
 <enumerated>STRING</enumerated>
 </basic>
 </attributes>
</entity>

LOBs, BLOBs, CLOBs and Serialization
A LOB is a Large OBject, such as a BLOB (Binary LOB), or a CLOB (Character LOB). It is a
database type that can store a large binary or string value, as the normal VARCHAR or
VARBINARY types typically have size limitations. A LOB is often stored as a locator in the
database table, with the actual data stored outside of the table. In Java a CLOB will normally
map to a String, and a BLOB will normally map to a byte[], although a BLOB may also
represent some serialized object.

https://java.sun.com/java/5/docs/api/java/lang/Enum.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Enumerated.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Enumerated.html

Java Persistence/ Print version 67

By default in JPA any Serializable attribute that is not a relationship or a basic type
(String, Number, temporal, primitive), will be serialized to a BLOB field.
JPA defines the @Lob (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ Lob.
html) annotation and <lob> element (on a <basic>) to define that an attribute maps to a
LOB type in the database. The annotation is just a hint to the JPA implementation that this
attribute will be stored in a LOB, as LOBs may need to be persisted specially. Sometimes
just mapping the LOB as a normal Basic will work fine as well.
Various databases and JDBC drivers have various limits for LOB sizes. Some JDBC drivers
have issues beyond 4k, 32k or 1meg. The Oracle thin JDBC drivers had a 4k limitation in
some versions for binding LOB data. Oracle provided a workaround for this limitation,
which some JPA providers support. For reading LOBs, some JDBC drivers prefer using
streams, some JPA providers also support this option.
Typically the entire LOB will be read and written for the attribute. For very large LOBs
reading the value always, or reading the entire value may not be desired. The fetch type of
the Basic could be set to LAZY to avoid reading a LOB unless accessed. Support for LAZY
fetching on Basic is optional in JPA, so some JPA providers may not support it. A
workaround, which is often a good idea in general given the large performance cost of
LOBs, is to store the LOB in a separate table and class and define a OneToOne to the LOB
object instead of a Basic. If the entire LOB is never desired to be read, then it should not be
mapped. It is best to use direct JDBC to access and stream the LOB in this case. In may be
possible to map the LOB to a java.sql.Blob/java.sql.Clob in your object to avoid
reading the entire LOB, but these require a live connection, so may have issues with
detached objects.

Example of lob annotation
@Entity
public class Employee {
 ...
 @Basic(fetch=FetchType.LAZY)
 @Lob
 private Image picture;
 ...
}

Example of lob XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 ...
 <basic name="picture" fetch="LAZY">
 <lob/>
 </basic>
 </attributes>
</entity>

https://java.sun.com/javaee/5/docs/api/javax/persistence/Lob.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Lob.html

Java Persistence/ Print version 68

Lazy Fetching
The fetch attribute can be set on a Basic mapping to use LAZY fetching. By default all
Basic mappings are EAGER, which means the column is selected whenever the object is
selected. By setting the fetch to LAZY, the column will not be selected with the object. If
the attribute is accessed, then the attribute value will be selected in a separate database
select. Support for LAZY is an optional feature of JPA, so some JPA providers may not
support it. Typically support for lazy on basics will require some form of byte code weaving,
or dynamic byte code generation, which may have issues in certain environments or JVMs,
or may require preprocessing your application's persistence unit jar.
Only attributes that are rarely accessed should be marked lazy, as accessing the attribute
causes a separate database select, which can hurt performance. This is especially true if a
large number of objects is queried. The original query will require one database select, but
if each object's lazy attribute is accessed, this will require n database selects, which can be
a major performance issue.
Using lazy fetching on basics is similar to the concept of fetch groups. Lazy basics is
basically support for a single default fetch group. Some JPA providers support fetch groups
in general, which allow more sophisticated control over what attributes are fetched per
query.

TopLink, EclipseLink : Support lazy basics and fetch groups. Fetch groups can be
configured through the EclipseLink API using the FetchGroup class.

Optional
A Basic attribute can be optional if its value is allowed to be null. By default everything
is assumed to be optional, except for an Id, which can not be optional. Optional is basically
only a hint that applies to database schema generation, if the persistence provider is
configured to generate the schema. It adds a NOT NULL constraint to the column if false.
Some JPA providers also perform validation of the object for optional attributes, and will
throw a validation error before writing to the database, but this is not required by the JPA
specification. Optional is defined through the optional attribute of the Basic annotation
or element.

Column Definition and Schema Generation
There are various attributes on the Column (https:/ / java. sun. com/ javaee/ 5/ docs/ api/
javax/ persistence/ Column. html) annotation and element for database schema generation.
If you do not use JPA to generate your schema you can ignore these. Many JPA providers do
provide the feature of auto generation of the database schema. By default the Java types of
the object's attributes are mapped to their corresponding database type for the database
platform you are using. You may require configuring your database platform with your
provider (such as a persistence.xml property) to allow schema generation for your
database, as many database use different type names.
The columnDefinition attribute of Column can be used to override the default database
type used, or enhance the type definition with constraints or other such DDL. The length,
scale and precision can also be set to override defaults. Since the defaults for the
length are just defaults, it is normally a good idea to set these to be correct for your data
model's expected data, to avoid data truncation. The unique attribute can be used to define

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
https://java.sun.com/javaee/5/docs/api/javax/persistence/Column.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Column.html

Java Persistence/ Print version 69

a unique constraint on the column, most JPA providers will automatically define primary
key and foreign key constraints based on the Id and relationship mappings.
JPA does not define any options to define an index. Some JPA providers may provide
extensions for this. You can also create your own indexes through native queries

Example of column annotations
@Entity
public class Employee {
 @Id
 @Column(name="ID")
 private long id;
 @Column(name="SSN" unique=true optional=false)
 private long ssn;
 @Column(name="F_NAME" length=100)
 private String firstName;
 @Column(name="L_NAME" length=200)
 private String lastName;
 @Column(name="SALARY" scale=10 precision=2)
 private BigDecimal salary;
 @Column(name="S_TIME" columnDefinition="TIMESTAMPTZ")
 private Calendar startTime;
 @Column(name="E_TIME" columnDefinition ="TIMESTAMPTZ")
 private Calendar endTime;
 ...
}

Example of column XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id">
 <column name="ID"/>
 </id>
 <basic name="ssn">
 <column name="SSN" unique="true" optional="false"/>
 </basic>
 <basic name="firstName">
 <column name="F_NAME" length="100"/>
 </basic>
 <basic name="lastName">
 <column name="L_NAME" length="200"/>
 </basic>
 <basic name="startTime">
 <column name="S_TIME" columnDefinition="TIMESTAMPTZ"/>
 </basic>
 <basic name="endTime">
 <column name="E_TIME" columnDefinition="TIMESTAMPTZ"/>
 </basic>

Java Persistence/ Print version 70

 </attributes>
</entity>

Insertable, Updatable / Read Only Fields / Returning
The Column annotation and XML element defines insertable and updatable options.
These allow for this column, or foreign key field to be omitted from the SQL INSERT or
UPDATE statement. These can be used if constraints on the table prevent insert or update
operations. They can also be used if multiple attributes map to the same database column,
such as with a foreign key field through a ManyToOne and Id or Basic mapping. Setting
both insertable and updatable to false, effectively mark the attribute as read-only.
insertable and updatable can also be used in the database table defaults, or auto assigns
values to the column on insert or update. Be careful in doing this though, as this means that
the object's values will be out of synch with the database, unless it is refreshed. For
IDENTITY or auto assigned id columns a GeneratedValue should normally be used, instead
of setting insertable to false. Some JPA providers also support returning auto assigned
fields values from the database after insert or update operations. The cost of refreshing or
returning fields back into the object can effect performance, so it is normally better to
initialize field values in the object model, not in the database.

TopLink, EclipseLink : Support returning insert and update values back into the object
using the ReturnInsert and ReturnUpdate annotations and XML elements.

Conversion
A common problem in storing values to the database is that the value desired in Java differs
from the value used in the database. Common examples include using a boolean in Java
and a 0, 1 or a 'T', 'F' in the database. Other examples are using a String in Java and a
DATE in the database.
One way to accomplish this is to translate the data through property get/set methods.

@Entity
public class Employee {
 ...
 private boolean isActive;
 ...
 @Transient
 public boolean getIsActive() {
 return isActive;
 }
 public void setIsActive(boolean isActive) {
 this.isActive = isActive;
 }
 @Basic
 private String getIsActiveValue() {
 if (isActive) {
 return "T";
 } else {
 return "F";

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 71

 }
 }
 private void setIsActiveValue(String isActive) {
 this.isActive = "T".equals(isActive);
 }
}

Also for translating date/times see, Temporals.
As well some JPA providers have support for this.

TopLink, EclipseLink : Support translation using the @Convert, @Converter,
@ObjectTypeConverter and @TypeConverter annotations and XML.

Custom Types
JPA defines support for most common database types, however some databases and JDBC
driver have additional types that may require additional support.
Some custom database types include:
• TIMESTAMPTZ, TIMESTAMPLTZ (Oracle)
• TIMESTAMP WITH TIMEZONE (Postgres)
• XMLTYPE (Oracle)
• XML (DB2)
• NCHAR, NVARCHAR, NCLOB (Oracle)
• Struct (STRUCT Oracle)
• Array (VARRAY Oracle)
• BINARY_INTEGER, DEC, INT, NATURAL, NATURALN, BOOLEAN (Oracle)
• POSITIVE, POSITIVEN, SIGNTYPE, PLS_INTEGER (Oracle)
• RECORD, TABLE (Oracle)
• SDO_GEOMETRY (Oracle)
• LOBs (Oracle thin driver)
To handle persistence to custom database types either custom hooks are required in your
JPA provider, or you need to mix raw JDBC code with your JPA objects. Some JPA provider
provide custom support for many custom database types, some also provide custom hooks
for adding your own JDBC code to support a custom database type.

TopLink, EclipseLink : Support several custom database types including,
TIMESTAMPTZ, TIMESTAMPLTZ, XMLTYPE, NCHAR, NVARCHAR, NCLOB,
object-relational Struct and Array types, PLSQL types, SDO_GEOMETRY and LOBs.

Relationships
A relationship is a reference from one object to another. In Java, relationships are defined
through object references (pointers) from a source object to the target object. Technically,
in Java there is no difference between a relationship to another object and a "relationship"
to a data attribute such as a String or Date (primitives are different), as both are
pointers; however, logically and for the sake of persistence, data attributes are considered
part of the object, and references to other persistent objects are considered relationships.
In a relational database relationships are defined through foreign keys. The source row
contains the primary key of the target row to define the relationship (and sometimes the

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 72

inverse). A query must be performed to read the target objects of the relationship using the
foreign key and primary key information.
In Java, if a relationship is to a collection of other objects, a Collection or array type is
used in Java to hold the contents of the relationship. In a relational database, collection
relations are either defined by the target objects having a foreign key back to the source
object's primary key, or by having an intermediate join table to store the relationship (both
objects' primary keys).
All relationships in Java and JPA are unidirectional, in that if a source object references a
target object there is no guarantee that the target object also has a relationship to the
source object. This is different than a relational database, in which relationships are
defined through foreign keys and querying such that the inverse query always exists.

JPA Relationship Types
• OneToOne - A unique reference from one object to another, inverse of a OneToOne.
• ManyToOne - A reference from one object to another, inverse of a OneToMany.
• OneToMany - A Collection or Map of objects, inverse of a ManyToOne.
• ManyToMany - A Collection or Map of objects, inverse of a ManyToMany.
• Embedded - A reference to a object that shares the same table of the parent.
• ElementCollection - JPA 2.0, a Collection or Map of Basic or Embedable objects,

stored in a separate table.
This covers the majority of types of relationships that exist in most object models. Each type
of relationship also covers multiple different implementations, such as OneToMany allowing
either a join table, or foreign key in the target, and collection mappings also allow
Collection types and Map types. There are also other possible complex relationship types,
see Advanced Relationships.

Lazy Fetching
The cost of retrieving and building an object's relationships, far exceeds the cost of
selecting the object. This is especially true for relationships such as manager or
managedEmployees such that if any employee were selected it would trigger the loading of
every employee through the relationship hierarchy. Obviously this is a bad thing, and yet
having relationships in objects is very desirable.
The solution to this issue is lazy fetching (lazy loading). Lazy fetching allows the fetching of
a relationship to be deferred until it is accessed. This is important not only to avoid the
database access, but also to avoid the cost of building the objects if they are not needed.
In JPA lazy fetching can be set on any relationship using the fetch attribute. The fetch
can be set to either LAZY or EAGER as defined in the FetchType (https:/ / java. sun. com/
javaee/ 5/ docs/ api/ javax/ persistence/ FetchType. html) enum. The default fetch type is
LAZY for all relationships except for OneToOne and ManyToOne, but in general it is a good
idea to make every relationship LAZY. The EAGER default for OneToOne and ManyToOne is
for implementation reasons (more difficult to implement), not because it is a good idea.
Technically in JPA LAZY is just a hint, and a JPA provider is not required to support it,
however in reality all main JPA providers support it, and they would be pretty useless if
they did not.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/OneToOne
http://en.wikibooks.org/w/index.php?title=Java_Persistence/ManyToOne
http://en.wikibooks.org/w/index.php?title=Java_Persistence/OneToMany
http://en.wikibooks.org/w/index.php?title=Java_Persistence/ManyToMany
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Embeddables
http://en.wikibooks.org/w/index.php?title=Java_Persistence/ElementCollection
https://java.sun.com/javaee/5/docs/api/javax/persistence/FetchType.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/FetchType.html

Java Persistence/ Print version 73

Example of a lazy one to one relationship annotations
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @OneToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="ADDR_ID")
 private Address address;
 ...
}

Example of a lazy one to one relationship XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <one-to-one name="address" fetch="LAZY">
 <join-column name="ADDR_ID"/>
 </one-to-one>
 </attributes>
</entity>

Magic
Lazy fetching normally involves some sort of magic in the JPA provider to transparently
fault in the relationships as they are accessed. The typical magic for collection relationships
is for the JPA provider to set the relationships to its own Collection, List, Set or Map
implementation. When any (or most) method is accessed on this collection proxy, it loads
the real collection and forwards the method. This is why JPA requires that all collection
relationships use one of the collection interfaces (although some JPA providers support
collection implementations too).
For OneToOne and ManyToOne relationships the magic normally involves some sort of byte
code manipulation of the entity class, or creation of a subclass. This allows the access to the
field or get/set methods to be intercepted, and for the relationships to be first retrieved
before allowing access to the value. Some JPA providers use different methods, such as
wrapping the reference in a proxy object, although this can have issues with null values
and primitive methods. To perform the byte code magic normally an agent or
post-processor is required. Ensure that you correctly use your providers agent or
post-processor otherwise lazy may not work. You may also notice additional variables when
in a debugger, but in general debugging will still work as normal.

Java Persistence/ Print version 74

Basics
A Basic attribute can also be made LAZY, but this is normally a different mechanism than
lazy relationships, and should normally be avoided unless the attribute is rarely accessed.
See Basic Attributes : Lazy Fetching.

Serialization, and Detaching
A major issue with lazy relationships, is ensuring that the relationship is still available after
the object has been detached, or serialized. For most JPA providers, after serialization any
lazy relationship that was not instantiated will be broken, and either throw an error when
accessed, or return null.
The naive solution is to make every relationship eager. Serialization suffers from the same
issue as persistence, in that you can very easily serialize your entire database if you have no
lazy relationships. So lazy relationships are just a necessary for serialization, as they are for
database access, however you need to ensure you have everything you will need after
serialization instantiated upfront. You may mark only the relationships that you think you
will need after serialization as EAGER, this will work, however there are probably may cases
when you do not need these relationships.
A second solution is to access any relationship you will need before returning the object for
serialization. This has the advantage of being use case specific, so different use cases can
instantiate different relationships. For collection relationships sending size() is normally
the best way to ensure a lazy relationship is instantiated. For OneToOne and ManyToOne
relationships, normally just accessing the relationship is enough (i.e.
employee.getAddress()), although for some JPA providers that use proxies you may need
to send the object a message (i.e.employee.getAddress().hashCode()).
A third solution is to use the JPQL JOIN FETCH for the relationship when querying the
objects. A join fetch will normally ensure the relationship has been instantiated. Some
caution should be used with join fetch however, as it can become inefficient if used on
collection relationships, especially multiple collection relationships as it requires an n^2
join on the database.
Some JPA providers may also provide certain query hints, or other such serialization
options.
The same issue can occur without serialization, if a detached object is accessed after the
end of the transaction. Some JPA providers allow lazy relationship access after the end of
the transaction, or after the EntityManager has been closed, however some do not. If your
JPA provider does not, then you may require that you ensure you have instantiated all the
lazy relationships that you will need before ending the transaction.

Eager Join Fetching
One common misconception is that EAGER means that the relationship should be join
fetched, i.e. retrieved in the same SQL SELECT statement as the source object. Some JPA
providers do implement eager this way. However, just because something is desired to be
loaded, does not mean that it should be join fetched. Consider Employee - Phone, a Phone's
employee reference is made EAGER as the employee is almost always loaded before the
phone. However when loading the phone, you do not want to join the employee, the
employee has already been read and is already in the cache or persistence context. Also

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Basic_Attributes%23Lazy_Fetching

Java Persistence/ Print version 75

just because you want two collection relationships loaded, does not mean you want them
join fetch which would result in a very inefficient join that would return n^2 data.
Join fetching is something that JPA currently only provides through JPQL, which is normally
the correct place for it, as each use case has different relationship requirements. Some JPA
providers also provider a join fetch option at the mapping level to always join fetch a
relationship, but this is normally not the same thing as EAGER. Join fetching is not normally
the most efficient way to load a relationship anyway, normally batch reading a relationship
is much more efficient when supported by your JPA provider.
See Join Fetching
See Batch Reading

Cascading
Relationship mappings have a cascade option that allows the relationship to be cascaded
for common operations. cascade is normally used to model dependent relationships, such
as Order -> OrderLine. Cascading the orderLines relationship allows for the Order's ->
OrderLines to be persisted, removed, merged along with their parent.
The following operations can be cascaded, as defined in the CascadeType (https:/ / java.
sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ CascadeType. html) enum:
• PERSIST - Cascaded the EntityManager.persist() operation. If persist() is called on

the parent, and the child is also new, it will also be persisted. If it is existing, nothing will
occur, although calling persist() on an existing object will still cascade the persist
operation to its dependents. If you persist an object, and it is related to a new object, and
the relationship does not cascade persist, then an exception will occur. This may require
that you first call persist on the related object before relating it to the parent. General it
may seem odd, or be desirable to always cascade the persist operation, if a new object is
related to another object, then it should probably be persisted. There is most likely not a
major issue with always cascading persist on every relationship, although it may have an
impact on performance. Calling persist on a related object is not required, on commit any
related object whose relationship is cascade persist will automatically be persisted. The
advantage of calling persist up front is that any generated ids will (unless using identity)
be assigned, and the prePersist event will be raised.

• REMOVE - Cascaded the EntityManager.remove() operation. If remove() is called on the
parent then the child will also be removed. This should only be used for dependent
relationships. Note that only the remove() operation is cascaded, if you remove a
dependent object from a OneToMany collection it will not be deleted, JPA requires that
you explicitly call remove() on it. Some JPA providers may support an option to have
objects removed from dependent collection deleted, JPA 2.0 also defines an option for
this.

• MERGE - Cascaded the EntityManager.merge() operation. If merge() is called on the
parent, then the child will also be merged. This should normally be used for dependent
relationships. Note that this only effects the cascading of the merge, the relationship
reference itself will always be merged. This can be a major issue if you use transient
variables to limit serialization, you may need to manually merge, or reset transient
relationships in this case. Some JPA providers provide additional merge operations.

• REFRESH - Cascaded the EntityManager.refresh() operation. If refresh() is called on
the parent then the child will also be refreshed. This should normally be used for

https://java.sun.com/javaee/5/docs/api/javax/persistence/CascadeType.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/CascadeType.html

Java Persistence/ Print version 76

dependent relationships. Be careful enabling this for all relationships, as it could cause
changes made to other objects to be reset.

• ALL - Cascaded all the above operations.

Example of a cascaded one to one relationship annotations
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @OneToOne(cascade={CascadeType.ALL})
 @JoinColumn(name="ADDR_ID")
 private Address address;
 ...
}

Example of a cascaded one to one relationship XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <one-to-one name="address">
 <join-column name="ADDR_ID"/>
 <cascade>
 <cascade-all/>
 </cascade>
 </one-to-one>
 </attributes>
</entity>

Target Entity
Relationship mappings have a targetEntity attribute that allows the reference class
(target) of the relationship to be specified. This is normally not required to be set as it is
defaulted from the field type, get method return type, or collection's generic type.
This can also be used if your field uses a public interface type, for example field is interface
Address, but the mapping needs to be to implementation class AddressImpl. Another usage
is if your field is a superclass type, but you want to map the relationship to a subclass.

Example of a target entity relationship annotations
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @OneToMany(targetEntity=Phone.class)
 @JoinColumn(name="OWNER_ID")
 private List phones;

Java Persistence/ Print version 77

 ...
}

Example of a target entity relationship XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <one-to-many name="phones" target-entity="org.acme.Phone">
 <join-column name="OWNER_ID"/>
 </one-to-many>
 </attributes>
</entity>

Collections
Collection mappings include OneToMany, ManyToMany, and in JPA 2.0 ElementCollection.
JPA requires that the type of the collection field or get/set methods be one of the Java
collection interfaces, Collection, List, Set, or Map.

Collection Implementations
Your field should not be of a collection implementation type, such as ArrayList. Some JPA
providers may support using collection implementations, many support EAGER collection
relationships to use the implementation class. You can set any implementation as the
instance value of the collection, but when reading an object from the database, if it is LAZY
the JPA provider will normally put in a special LAZY collection.

Duplicates
A List in Java supports duplicate entries, and a Set does not. In the database, duplicates
are generally not supported. Technically it could be possible if a JoinTable is used, but JPA
does not require duplicates to be supported, and most providers do not.
If you require duplicate support, you may need to create an object that represents and
maps to the join table. This object would still require a unique Id, such as a
GeneratedValue. See Mapping a Join Table with Additional Columns.

Ordering
JPA allows the collection values to be ordered by the database when retrieved. This is done
through the @OrderBy (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/
OrderBy. html) annotation or <order-by> XML element.
The value of the OrderBy is a JPQL ORDER BY string. The can be an attribute name followed
by ASC or DESC for ascending or descending ordering. You could also use a path or nested
attribute, or a "," for multiple attributes. If no OrderBy value is given it is assumed to be
the Id of the target object.
The OrderBy value must be a mapped attribute of the target object. If you want to have an
ordered List you need to add an index attribute to your target object and an index column
to it's table. You will also have to ensure you set the index values. JPA 2.0 will have
extended support for an ordered List using an OrderColumn.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/OneToMany
http://en.wikibooks.org/w/index.php?title=Java_Persistence/ManyToMany
http://en.wikibooks.org/w/index.php?title=Java_Persistence/ElementCollection
http://en.wikibooks.org/w/index.php?title=Java_Persistence/ManyToMany%23Mapping_a_Join_Table_with_Additional_Columns
https://java.sun.com/javaee/5/docs/api/javax/persistence/OrderBy.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/OrderBy.html
http://en.wikibooks.org/w/index.php?title=Java_Persistence/JPQL_BNF%23Order_By

Java Persistence/ Print version 78

Note that using an OrderBy does not ensure the collection is ordered in memory. You are
responsible for adding to the collection in the correct order. Java does define a SortedSet
interface and TreeSet collection implementation that does maintain an order. JPA does not
specifically support SortedSet, but some JPA providers may allow you to use a SortedSet
or TreeSet for your collection type, and maintain the correct ordering. By default these
require your target object to implement the Comparable interface, or set a Comparator.
You can also use the Collections.sort() method to sort a List when required. One
option to sort in memory is to use property access and in your set and add methods call
Collections.sort().

Example of a collection order by annotation
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @OneToMany
 @OrderBy("areaCode")
 private List<Phone> phones;
 ...
}

Example of a collection order by XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <one-to-many name="phones">
 <order-by>areaCode</order-by>
 </one-to-many>
 </attributes>
</entity>

Order Column (JPA 2.0)
JPA 2.0 adds support for an OrderColumn. An OrderColumn can be used to define an order
List on any collection mapping. It is defined through the @OrderColumn annotation or
<order-column> XML element.
The OrderColumn is maintained by the mapping and should not be an attribute of the target
object. The table for the OrderColumn depends on the mapping. For a OneToMany mapping
it will be in the target object's table. For a ManyToMany mapping or a OneToMany using a
JoinTable it will be in the join table. For an ElementCollection mapping it will be in the
target table.

Java Persistence/ Print version 79

Example of a collection order column annotation
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @OneToMany
 @OrderColumn(name="INDEX")
 private List<Phone> phones;
 ...
}

Example of a collection order column XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <one-to-many name="phones">
 <order-column name="INDEX"/>
 </one-to-many>
 </attributes>
</entity>

Common Problems
Object corruption, one side of the relationship is not updated after updating the
other side
A common problem with bi-directional relationships is the application updates one side of
the relationship, but the other side does not get updated, and becomes out of synch. In JPA,
as in Java in general it is the responsibility of the application, or the object model to
maintain relationships. If your application adds to one side of a relationship, then it must
add to the other side.
This is commonly resolved through add or set methods in the object model that handle
both sides of the relationships, so the application code does not need to worry about it.
There are two ways to go about this, you can either only add the relationship maintenance
code to one side of the relationship, and only use the setter from one side (such as making
the other side protected), or add it to both sides and ensure you avoid a infinite loop.
For example:

public class Employee {
 private List phones;
 ...
 public void addPhone(Phone phone) {
 this.phones.add(phone);
 if (phone.getOwner() != this) {
 phone.setOwner(this);
 }
 }

Java Persistence/ Print version 80

 ...
}

public class Phone {
 private Employee owner;
 ...
 public void setOwner(Employee employee) {
 this.owner = employee;
 if (!employee.getPhones().contains(this)) {
 employee.getPhones().add(this);
 }
 }
 ...
}

The code is similar for bi-directional OneToOne and ManyToMany relationships.
Some expect the JPA provider to have magic that automatically maintains relationships.
This was actually part of the EJB CMP 2 specification. However the issue is if the objects
are detached or serialized to another VM, or new objects are related before being managed,
or the object model is used outside the scope of JPA, then the magic is gone, and the
application is left figuring things out, so in general it may be better to add the code to the
object model. However some JPA providers do have support for automatically maintaining
relationships.
In some cases it is undesirable to instantiate a large collection when adding a child object.
One solution is to not map the bi-directional relationship, and instead query for it as
required. Also some JPA provides optimize their lazy collection objects to handle this case,
so you can still add to the collection without instantiating it.

Poor performance, excessive queries
This most common issue leading to poor performance is the usage of EAGER relationships.
This requires the related objects to be read when the source objects are read. So for
example reading the president of the company with EAGER managedEmployees will cause
every Employee in the company to be read. The solution is to always make all relationships
LAZY. By default OneToMany and ManyToMany are LAZY but OneToOne and ManyToOne are
not, so make sure you configure them to be. See, Lazy Fetching. Sometimes you have LAZY
configured but it does not work, see Lazy is not working
Another common problems is the n+1 issue. For example consider that you read all
Employee objects then access their Address. Since each Address is accessed separately
this will cause n+1 queries, which can be a major performance problem. This can be solved
through Join Fetching and Batch Reading.

Java Persistence/ Print version 81

Lazy is not working
Lazy OneToOne and ManyToOne relationships typically require some form of weaving or
byte-code generation. Normally when running in JSE an agent option is required to allow
the byte-code weaving, so ensure you have the agent configured correctly. Some JPA
providers perform dynamic subclass generation, so do not require an agent.
Example agent

 java -javaagent:eclipselink.jar ...

Some JPA providers also provide static weaving instead, or in addition to dynamic weaving.
For static weaving some preprocessor must be run on your JPA classes.
When running in JEE lazy should normally work, as the class loader hook is required by the
EJB specification. However some JEE providers may not support this, so static weaving may
be required.
Also ensure that you are not accessing the relationship when you shouldn't be. For example
if you use property access, and in your set method access the related lazy value, this will
cause it to be loaded. Either remove the set method side-effects, or use field access.

Broken relationships after serialization
If your relationship is marked as lazy then if it has not been instantiated before the object
is serialized, then it may not get serialized. This may cause an error, or return null if it is
accessed after deserialization.
See, Serialization, and Detaching

Dependent object removed from OneToMany collection is not deleted
When you remove an object from a collection, if you also want the object deleted from the
database you must call remove() on the object. In JPA 1.0 even if your relationship is
cascade REMOVE, you still must call remove(), only the remove of the parent object is
cascaded, not removal from the collection.
JPA 2.0 will provide an option for having removes from the collection trigger deletion. Some
JPA providers support an option for this in JPA 1.0.
See, Cascading

My relationship target is an interface
If your relationship field's type is a public interface of your class, and only has a single
implementer, then this is simple to solve, you just need to set a targetEntity on your
mapping. See, Target Entity.
If your interface has multiple implementers, then this is more complex. JPA does not
directly support mapping interfaces. One solution is to convert the interface to an abstract
class and use inheritance to map it. You could also keep the interface, create the abstract
class an make sure each implementer extends it, and set the targetEntity to be the
abstract class.
Another solution is to define virtual attributes using get/set methods for each possible
implementer, and map these separately, and mark the interface get/set as transient. You
could also not map the attribute, and instead query for it as required.
Some JPA providers have support for interfaces and variable relationships.

Java Persistence/ Print version 82

TopLink, EclipseLink : Support variable relationships through their
@VariableOneToOne annotation and XML. Mapping to and querying interfaces are also
supported through their ClassDescriptor's InterfacePolicy API.

Advanced

Advanced Relationships

JPA 2.0 Relationship Enhancements
• ElementCollection - A Collection or Map of Embeddable or Basic values.
• Map Columns - A OneToMany or ManyToMany or ElementCollection that has a Basic,
Embeddable or Entity key not part of the target object.

• Order Columns - A OneToMany or ManyToMany or ElementCollection can now have a
OrderColumn that defines the order of the collection when a List is used.

• Unidirectional OneToMany - A OneToMany no longer requires the ManyToOne inverse
relationship to be defined.

Other Types of Relationships
• Variable OneToOne, ManyToOne - A reference to an interface or common unmapped

inheritance class that has multiple distinct implementors.
• Variable OneToMany, ManyToMany - A Collection or Map of heterogeneous objects

that share an interface or common unmapped inheritance class that has multiple distinct
implementers.

• Nested collection relationships, such as an array of arrays, Listof Lists, or Map of
Maps, or other such combinations. Object-Relational Data Type -
Relationships stored in the database using STRUCT, VARRAY, REF, or
NESTEDTABLE types. XML relationships - Relationships stored as XML
documents.

Maps
Java defines the Map interface to represent collections whose values are indexed on a key.
There are several Map implementations, the most common is HashMap, but also Hashtable
and TreeMap.
JPA allows a Map to be used for any collection mapping including, OneToMany, ManyToMany
and ElementCollection. JPA requires that the Map interface be used as the attribute type,
although some JPA providers may also support using Map implementations.
In JPA 1.0 the map key must be a mapped attribute of the collection values. The @MapKey
(https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ MapKey. html) annotation
or <map-key> XML element is used to define a map relationship. If the MapKey is not
specified it defaults to the target object's Id.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/ElementCollection
http://en.wikibooks.org/w/index.php?title=Java_Persistence/OneToMany%23Undirectional_OneToMany%2C_No_Inverse_ManyToOne%2C_No_Join_Table_%28JPA_2.0%29
https://java.sun.com/javaee/5/docs/api/javax/persistence/MapKey.html

Java Persistence/ Print version 83

Example of a map key relationship annotation
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @OneToMany(mappedBy="owner")
 @MapKey(name="type")
 private Map<String, PhoneNumber> phoneNumbers;
 ...
}

@Entity
public class PhoneNumber {
 @Id
 private long id;
 @Basic
 private String type; // Either "home", "work", or "fax".
 ...
 @ManyToOne
 private Employee owner;
 ...
}

Map Key Columns (JPA 2.0)
JPA 2.0 allows for a Map where the key is not part of the target object to be persisted. The
Map key can be any of the following:
• A Basic value, stored in the target's table or join table.
• An Embedded object, stored in the target's table or join table.
• A foreign key to another Entity, stored in the target's table or join table.
Map columns can be used for any collection mapping including, OneToMany, ManyToMany
and ElementCollection.
This allows for great flexibility and complexity in the number of different models that can
be mapped. The type of mapping used is always determined by the value of the Map, not the
key. So if the key is a Basic but the value is an Entity a OneToMany mapping is still used.
But if the value is a Basic but the key is an Entity a ElementCollection mapping is
used.
This allows some very sophisticated database schemas to be mapped. Such as a three way
join table, can be mapped using a ManyToMany with a MapKeyJoinColumn for the third
foreign key. For a ManyToMany the key is always stored in the JoinTable. For a OneToMany
it is stored in the JoinTable if defined, otherwise it is stored in the target Entity's table,
even though the target Entity does not map this column. For an ElementCollection the
key is stored in the element's table.
The @MapKeyColumn annotation or <map-key-column> XML element is used to define a map
relationship where the key is a Basic value, the @MapKeyEnumerated and
@MapKeyTemporal can also be used with this for Enum or Calendar types. The

Java Persistence/ Print version 84

@MapKeyJoinColumn annotation or <map-key-join-column> XML element is used to define
a map relationship where the key is an Entity value, the @MapKeyJoinColumns can also be
used with this for composite foreign keys. The annotation @MapKeyClass or
<map-key-class> XML element can be used when the key is an Embeddable or to specify
the target class or type if generics are not used.

Example of a map key column relationship annotation
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @OneToMany(mappedBy="owner")
 @MapKeyColumn(name="PHONE_TYPE")
 private Map<String, PhoneNumber> phoneNumbers;
 ...
}

@Entity
public class PhoneNumber {
 @Id
 private long id;
 ...
 @ManyToOne
 private Employee owner;
 ...
}

Example of a map key relationship XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <one-to-many name="phoneNumbers" mapped-by="owner">
 <map-key name="type"/>
 </one-to-many>
 </attributes>
</entity>
<entity name="PhoneNumber" class="org.acme.PhoneNumber" access="FIELD">
 <attributes>
 <id name="id"/>
 <basic name="type"/>
 <many-to-one name="owner"/>
 </attributes>
</entity>

Java Persistence/ Print version 85

Example of a map key column relationship XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <one-to-many name="phoneNumbers" mapped-by="owner">
 <map-key-column name="PHONE_TYPE"/>
 </one-to-many>
 </attributes>
</entity>
<entity name="PhoneNumber" class="org.acme.PhoneNumber" access="FIELD">
 <attributes>
 <id name="id"/>
 <many-to-one name="owner"/>
 </attributes>
</entity>

Example of a map key join column relationship annotation
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @OneToMany(mappedBy="owner")
 @MapKeyJoinColumn(name="PHONE_TYPE_ID")
 private Map<PhoneType, PhoneNumber> phoneNumbers;
 ...
}

@Entity
public class PhoneNumber {
 @Id
 private long id;
 ...
 @ManyToOne
 private Employee owner;
 ...
}

@Entity
public class PhoneType {
 @Id
 private long id;
 ...
 @Basic
 private String type;
 ...
}

Java Persistence/ Print version 86

Example of a map key join column relationship XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <one-to-many name="phoneNumbers" mapped-by="owner">
 <map-key-join-column name="PHONE_TYPE_ID"/>
 </one-to-many>
 </attributes>
</entity>
<entity name="PhoneNumber" class="org.acme.PhoneNumber" access="FIELD">
 <attributes>
 <id name="id"/>
 <many-to-one name="owner"/>
 </attributes>
</entity>
<entity name="PhoneType" class="org.acme.PhoneType" access="FIELD">
 <attributes>
 <id name="id"/>
 <basic name="type"/>
 </attributes>
</entity>

Example of a map key class embedded relationship annotation
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @OneToMany
 @MapKeyClass(PhoneType.class)
 private Map<PhoneType, PhoneNumber> phoneNumbers;
 ...
}

@Entity
public class PhoneNumber {
 @Id
 private long id;
 ...
}

@Embeddable
public class PhoneType {
 @Basic
 private String type;
 ...
}

Java Persistence/ Print version 87

Example of a map key class embedded relationship XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <one-to-many name="phoneNumbers">
 <map-key-class>PhoneType</map-key-class>
 </one-to-many>
 </attributes>
</entity>
<entity name="PhoneNumber" class="org.acme.PhoneNumber" access="FIELD">
 <attributes>
 <id name="id"/>
 <many-to-one name="owner"/>
 </attributes>
</entity>
<embeddable name="PhoneType" class="org.acme.PhoneType" access="FIELD">
 <attributes>
 <basic name="type"/>
 </attributes>
</embeddable>

Join Fetching
Join fetching is a query optimization technique for reading multiple objects in a single
database query. It involves joining the two object's tables in SQL and selecting both object's
data. Join fetching is commonly used for OneToOne relationships, but also can be used for
any relationship including OneToMany and ManyToMany.
Join fetching is one solution to the classic ORM n+1 performance problem. The issue is if
you select n Employee objects, and access each of their addresses, in basic ORM (including
JPA) you will get 1 database select for the Employee objects, and then n database selects,
one for each Address object. Join fetching solves this issue by only requiring one select,
and selecting both the Employee and its Address.
JPA supports join fetching through JPQL using the JOIN FETCH syntax.

Example of JPQL Join Fetch
SELECT emp FROM Employee emp JOIN FETCH emp.address

This causes both the Employee and Address data to be selected in a single query.

Outer Joins
Using the JPQL JOIN FETCH syntax a normal INNER join is performed. This has the side
effect of filtering any Employee from the result set that did not have an address. An OUTER
join in SQL is one that does not filter absent rows on the join, but instead joins a row of all
null values. If your relationship allows null or an empty collection for collection
relationships, then you can use an OUTER join fetch, this is done in JPQL using the LEFT
syntax.

Java Persistence/ Print version 88

Note that OUTER joins can be less efficient on some databases, so avoid using an OUTER if it
is not required.

Example of JPQL Outer Join Fetch
SELECT emp FROM Employee emp LEFT JOIN FETCH emp.address

Mapping Level Join Fetch and EAGER
JPA has no way to specify that a join fetch always be used for a relationship. Normally it is
better to specify the join fetch at the query level, as some use cases may require the related
objects, and other use cases may not. JPA does support an EAGER option on mappings, but
this means that the relationship will be loaded, not that it will be joined. It may be desirable
to mark all relationships as EAGER as everything is desired to be loaded, but join fetching
everything in one huge select could result in a inefficient, overly complex, or invalid join on
the database.
Some JPA providers do interpret EAGER as join fetch, so this may work on some JPA
providers. Some JPA providers support a separate option for always join fetching a
relationship.

TopLink, EclipseLink : Support a @JoinFetch annotation and XML on a mapping to
define that the relationship always be join fetched.

Nested Joins
JPA 1.0 does not allow nested join fetches in JPQL, although this may be supported by some
JPA providers. You can join fetch multiple relationships, but not nested relationships.

Example of Multiple JPQL Join Fetch
SELECT emp FROM Employee emp LEFT JOIN FETCH emp.address LEFT JOIN
FETCH emp.phoneNumbers

Duplicate Data and Huge Joins
One issue with join fetching is that duplicate data can be returned. For example consider
join fetching an Employee's phoneNumbers relationship. If each Employee has 3 Phone
objects in its phoneNumbers collection, the join will require to bring back n*3 rows. As
there are 3 phone rows for each employee row, the employee row will be duplicated 3
times. So you are reading more data than if you have selected the objects in n+1 queries.
Normally the fact that your executing fewer queries makes up for the fact that you may be
reading duplicate data, but if you consider joining multiple collection relationships you can
start to get back j*i duplicate data which can start to become an issue. Even with
ManyToOne relationships you can be selecting duplicate data. Consider join fetching an
Employee's manager, if all or most employee's have the same manager, you will end up
select this manager's data many times, in this case you would be better off not using join
fetch, and allowing a single query for the manager.
If you start join fetching every relationship, you can start to get some pretty huge joins.
This can sometimes be an issue for the database, especially with huge outer joins.
One alternative solution to join fetch that does not suffer from duplicate data is using Batch
Reading.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 89

Batch Reading
Batch Reading is a query optimization technique for reading multiple related objects in a
finite set of database queries. It involves executing the query for the root objects as normal.
But for the related objects the original query is joined with the query for the related
objects, allowing all of the related objects to be read in a single database query. Batch
Reading can be used for any type of relationship.
Batch Reading is one solution to the classic ORM n+1 performance problem. The issue is if
you select n Employee objects, and access each of their addresses, in basic ORM (including
JPA) you will get 1 database select for the Employee objects, and then n database selects,
one for each Address object. Batch Reading solves this issue by requiring one select for the
Employee objects and one select for the Address objects.
Batch reading is more optimal for reading collection relationships and multiple
relationships as it does not require selecting duplicate data as in join fetching.
JPA does not support batch reading, but some JPA providers do.

TopLink, EclipseLink : Support a "eclipselink.batch" query hint to enable batch
reading. Batch reading can also be configured on a relationship mapping using the
API.

Filtering, Complex Joins
Normally a relationship is based on a foreign key in the database, but on occasion it is
always based on other conditions. Such as Employee having many PhoneNumbers but also a
single home phone, or one of his phones that has the "home" type, or a collection of
"active" projects, or other such condition.
JPA does not support mapping these types of relationships, as it only supports mappings
defined by foreign keys, not based on other columns, constant values, or functions. Some
JPA providers may support this. Workarounds include, mapping the foreign key part of the
relationship, then filtering the results in your get/set methods of your object. You could also
query for the results, instead of defining a relationship.

TopLink, EclipseLink : Support filtering and complex relationships through several
mechanisms. You can use a DescriptorCustomizer to define a selectionCriteria
on any mapping using the Expression criteria API. This allows for any condition to be
applied including constants, functions, or complex joins. You can also use a
DescriptorCustomizer to define the SQL or define a StoredProcedureCall for the
mapping's selectionQuery.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/TopLink
http://en.wikibooks.org/w/index.php?title=Java_Persistence/EclipseLink

Java Persistence/ Print version 90

OneToOne

A OneToOne relationship in Java is where the source object has an attribute that references
another target object and (if) that target object had the inverse relationship back to the
source object it would also be a OneToOne relationship. All relationships in Java and JPA are
unidirectional, in that if a source object references a target object there is no guarantee
that the target object also has a relationship to the source object. This is different than a
relational database, in which relationships are defined through foreign keys and querying
such that the inverse query always exists.
JPA also defines a ManyToOne relationship, which is similar to a OneToOne relationship
except that the inverse relationship (if it were defined) is a OneToMany relationship. The
main difference between a OneToOne and a ManyToOne relationship in JPA is that a
ManyToOne always contains a foreign key from the source object's table to the target
object's table, where as a OneToOne relationship the foreign key may either be in the source
object's table or the target object's table. If the foreign key is in the target object's table
JPA requires that the relationship be bi-directional (must be defined in both objects), and
the source object must use the mappedBy attribute to define the mapping.
In JPA a OneToOne relationship is defined through the @OneToOne (https:/ / java. sun. com/
javaee/ 5/ docs/ api/ javax/ persistence/ OneToOne. html) annotation or the <one-to-one>
element. A OneToOne relationship typically requires a @JoinColumn (https:/ / java. sun.
com/ javaee/ 5/ docs/ api/ javax/ persistence/ JoinColumn. html).

http://en.wikibooks.org/w/index.php?title=File:ObjectRelational-OneToOne.jpg
http://en.wikibooks.org/w/index.php?title=Java_Persistence/ManyToOne
https://java.sun.com/javaee/5/docs/api/javax/persistence/OneToOne.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/OneToOne.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/JoinColumn.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/JoinColumn.html

Java Persistence/ Print version 91

Example of a OneToOne relationship annotations
@Entity
public class Employee {
 @Id
 @Column(name="EMP_ID")
 private long id;
 ...
 @OneToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="ADDRESS_ID")
 private Address address;
 ...
}

Inverse Relationships, Target Foreign Keys and Mapped By
A typical object centric perspective of a OneToOne relationship has the data model mirror
the object model, in that the source object has a pointer to the target object, so the
database source table has a foreign key to the target table. This is not how things always
work out in the database though, in fact many database developers would think having the
foreign key in the target table to be logical, as this enforces the uniqueness of the
OneToOne relationship. Personally I prefer the object perspective, however you will most
likely encounter both.
To start with consider a bi-directional OneToOne relationship, you do not require two
foreign keys, one in each table, so a single foreign key in the owning side of the relationship
is sufficient. In JPA the inverse OneToOne must use the mappedBy attribute (with some
exceptions), this makes the JPA provider use the foreign key and mapping information in
the source mapping to define the target mapping.
See also, Target Foreign Keys, Primary Key Join Columns, Cascade Primary Keys.
The following gives an example of what the inverse address relationship would look like.

Example of an inverse OneToOne relationship annotations
@Entity
public class Address {
 @Id
 private long id;
 ...
 @OneToOne(fetch=FetchType.LAZY, mappedBy="address")
 private Employee owner;
 ...
}

Java Persistence/ Print version 92

Example of a OneToOne relationship XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id">
 <column name="EMP_ID"/>
 </id>
 <one-to-one name="address" fetch="LAZY">
 <join-column name="ADDRESS_ID"/>
 </one-to-one>
 </attributes>
</entity>

Example of an inverse OneToOne relationship XML
<entity name="Address" class="org.acme.Address" access="FIELD">
 <attributes>
 <id name="id"/>
 <one-to-one name="owner" fetch="LAZY" mapped-by="address"/>
 </attributes>
</entity>

See Also
• Relationships

• Cascading
• Lazy Fetching
• Target Entity
• Join Fetching
• Batch Reading
• Common Problems

• ManyToOne

Common Problems
Foreign key is also part of the primary key.

See Primary Keys through OneToOne Relationships.

Foreign key is also mapped as a basic.
If you use the same field in two different mappings, you typically require to make one
of them read-only using insertable, updateable = false.
See Target Foreign Keys, Primary Key Join Columns, Cascade Primary Keys.

Constraint error on insert.
This typically occurs because you have incorrectly mapped the foreign key in a
OneToOne relationship.

See Target Foreign Keys, Primary Key Join Columns, Cascade Primary Keys.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Cascading
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Lazy_Fetching
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Target_Entity
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Join_Fetching
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Batch_Reading
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Common_Problems
http://en.wikibooks.org/w/index.php?title=Java_Persistence/ManyToOne
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Identity_and_Sequencing%23Primary_Keys_through_OneToOne_Relationships

Java Persistence/ Print version 93

It can also occur if your JPA provider does not support referential integrity, or does not
resolve bi-directional constraints. In this case you may either need to remove the
constraint, or use EntityManager flush() to ensure the order your objects are
written in.

Foreign key value is null
Ensure you set the value of the object's OneToOne, if the OneToOne is part of a
bi-directional OneToOne relationship, ensure you set OneToOne in both object's, JPA
does not maintain bi-directional relationships for you.
Also check that you defined the JoinColumn correctly, ensure you did not set
insertable, updateable = false or use a PrimaryKeyJoinColumn, or mappedBy.

Advanced

Target Foreign Keys, Primary Key Join Columns, Cascade
Primary Keys
If a OneToOne relationship uses a target foreign key (the foreign key is in the target table,
not the source table), then JPA requires that you define a OneToOne mapping in both
directions, and that the target foreign key mapping use the mappedBy attribute. The reason
for this, is the mapping in the source object only affects the row the JPA writes to the
source table, if the foreign key is in the target table, JPA has no easy way to write this field.
There are other ways around this problem however. In JPA the JoinColumn defines an
insertable and updateable attribute, these can be used to instruct the JPA provider that
the foreign key is actually in the target object's table. With these enabled JPA will not write
anything to the source table, most JPA providers will also infer that the foreign key
constraint is in the target table to preserve referential integrity on insertion. JPA also
defines the @PrimaryKeyJoinColumn (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ PrimaryKeyJoinColumn. html) that can be used to define the same thing. You
still must map the foreign key in the target object in some fashion though, but could just
use a Basic mapping to do this.
Some JPA providers may support an option for a unidirectional OneToOne mapping for
target foreign keys.
Target foreign keys can be tricky to understand, so you might want to read this section
twice. They can get even more complex though. If you have a data model that cascades
primary keys then you can end up with a single OneToOne that has both a logical foreign
key, but has some fields in it that are logically target foreign keys.
For example consider Company, Department, Employee. Company's id is COM_ID,
Department's id is a composite primary key of COM_ID and DEPT_ID, and Employee's id is a
composite primary key of COM_ID, DEP_ID, and EMP_ID. So for an Employee its relationship
to company uses a normal ManyToOne with a foreign key, but its relationship to department
uses a ManyToOne with a foreign key, but the COM_ID uses insertable, updateable =
false or PrimaryKeyJoinColumn, because it is actually mapped through the company
relationship. The Employee's relationship to its address then uses a normal foreign key for
ADD_ID but a target foreign key for COM_ID, DEP_ID, and EMP_ID.

https://java.sun.com/javaee/5/docs/api/javax/persistence/PrimaryKeyJoinColumn.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/PrimaryKeyJoinColumn.html

Java Persistence/ Print version 94

This may work in some JPA providers, others may require different configuration, or not
support this type of data model.

Example of cascaded primary keys and mixed OneToOne and
ManyToOne mapping annotations
@Entity
@IdClass(EmployeeId.class)
public class Employee {
 @Id
 @Column(name="EMP_ID")
 private long employeeId;
 @Id
 @Column(name="DEP_ID" insertable=false, updateable=false)
 private long departmentId;
 @Id
 @Column(name="COM_ID" insertable=false, updateable=false)
 private long companyId;
 ...
 @ManyToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="COM_ID")
 private Company company;
 @ManyToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="DEP_ID")
 @JoinColumn(name="COM_ID" insertable=false, updateable=false)
 private Department department;
 @ManyToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="MNG_ID")
 @JoinColumn(name="DEP_ID" insertable=false, updateable=false)
 @JoinColumn(name="COM_ID" insertable=false, updateable=false)
 private Employee manager;
 @OneToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="ADD_ID")
 @JoinColumn(name="EMP_ID" insertable=false, updateable=false)
 @JoinColumn(name="DEP_ID" insertable=false, updateable=false)
 @JoinColumn(name="COM_ID" insertable=false, updateable=false)
 private Address address;
 ...
}

Example of cascaded primary keys and mixed OneToOne and
ManyToOne mapping annotations using PrimaryKeyJoinColumn
@Entity
@IdClass(EmployeeId.class)
public class Employee {
 @Id
 @Column(name="EMP_ID")
 private long employeeId;

Java Persistence/ Print version 95

 @Id
 @Column(name="DEP_ID" insertable=false, updateable=false)
 private long departmentId;
 @Id
 @Column(name="COM_ID" insertable=false, updateable=false)
 private long companyId;
 ...
 @ManyToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="COM_ID")
 private Company company;
 @ManyToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="DEP_ID")
 @PrimaryKeyJoinColumn(name="COM_ID")
 private Department department;
 @ManyToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="MNG_ID")
 @PrimaryKeyJoinColumn(name="DEP_ID")
 @PrimaryKeyJoinColumn(name="COM_ID")
 private Employee manager;
 @OneToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="ADD_ID")
 @PrimaryKeyJoinColumn(name="EMP_ID")
 @PrimaryKeyJoinColumn(name="DEP_ID")
 @PrimaryKeyJoinColumn(name="COM_ID")
 private Address address;
 ...
}

Mapping a OneToOne Using a Join Table
In some data models, you may have a OneToOne relationship defined through a join table.
For example consider you had existing EMPLOYEE and ADDRESS tables with no foreign key,
and wanted to define a OneToOne relationship without changing the existing tables. To do
this you could define an intermediate table that contained the primary key of both objects.
This is similar to a ManyToMany relationship, but if you add a unique constraint to each
foreign key you can enforce that it is OneToOne (or even OneToMany).
JPA defines a join table using the @JoinTable (https:/ / java. sun. com/ javaee/ 5/ docs/ api/
javax/ persistence/ JoinTable. html) annotation and <join-table> XML element. A
JoinTable can be used on a ManyToMany or OneToMany mappings, but the JPA 1.0
specification is vague whether it can be used on a OneToOne. The JoinTable documentation
does not state that it can be used in a OneToOne, but the XML schema for <one-to-one>
does allow a nested <join-table> element. Some JPA providers may support this, and
others may not.
If your JPA provider does not support this, you can workaround the issue by instead
defining a OneToMany or ManyToMany relationship and just define a get/set method that
returns/sets the first element on the collection.

https://java.sun.com/javaee/5/docs/api/javax/persistence/JoinTable.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/JoinTable.html

Java Persistence/ Print version 96

Example of a OneToOne using a JoinTable
 @OneToOne(fetch=FetchType.LAZY)
 @JoinTable(
 name="EMP_ADD"
 joinColumns=
 @JoinColumn(name="EMP_ID", referencedColumnName="EMP_ID"),
 inverseJoinColumns=
 @JoinColumn(name="ADDR_ID", referencedColumnName="ADDRESS_ID"))
 private Address address;
 ...

Example of simulating a OneToOne using a OneToMany JoinTable
 @OneToMany
 @JoinTable(
 name="EMP_ADD"
 joinColumns=
 @JoinColumn(name="EMP_ID", referencedColumnName="EMP_ID"),
 inverseJoinColumns=
 @JoinColumn(name="ADDR_ID", referencedColumnName="ADDRESS_ID"))
 private List<Address> addresses;
 ...
 public Address getAddress() {
 if (this.addresses.isEmpty()) {
 return null;
 }
 return this.addresses.get(0);
 }
 public void setAddress(Address address) {
 if (this.addresses.isEmpty()) {
 this.addresses.add(address);
 } else {
 this.addresses.set(1, address);
 }
 }
 ...

Java Persistence/ Print version 97

ManyToOne

A ManyToOne relationship in Java is where the source object has an attribute that
references another target object and (if) that target object had the inverse relationship
back to the source object it would be a OneToMany relationship. All relationships in Java and
JPA are unidirectional, in that if a source object references a target object there is no
guarantee that the target object also has a relationship to the source object. This is
different than a relational database, in which relationships are defined through foreign keys
and querying such that the inverse query always exists.
JPA also defines a OneToOne relationship, which is similar to a ManyToOne relationship
except that the inverse relationship (if it were defined) is a OneToOne relationship. The
main difference between a OneToOne and a ManyToOne relationship in JPA is that a
ManyToOne always contains a foreign key from the source object's table to the target
object's table, where as a OneToOne relationship the foreign key may either be in the source
object's table or the target object's table.
In JPA a ManyToOne relationship is defined through the @ManyToOne (https:/ / java. sun.
com/ javaee/ 5/ docs/ api/ javax/ persistence/ ManyToOne. html) annotation or the
<many-to-one> element.
In JPA a ManyToOne relationship is always (well almost always) required to define a
OneToMany relationship, the ManyToOne always defines the foreign key (JoinColumn) and
the OneToMany must use a mappedBy to define its inverse ManyToOne.

http://en.wikibooks.org/w/index.php?title=File:ObjectRelational-ManyToOne.jpg
http://en.wikibooks.org/w/index.php?title=Java_Persistence/OneToOne
https://java.sun.com/javaee/5/docs/api/javax/persistence/ManyToOne.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/ManyToOne.html
http://en.wikibooks.org/w/index.php?title=Java_Persistence/OneToMany

Java Persistence/ Print version 98

Example of a ManyToOne relationship annotations
@Entity
public class Phone {
 @Id
 private long id;
 ...
 @ManyToOne(fetch=FetchType.LAZY)
 @JoinColumn(name="OWNER_ID")
 private Employee owner;
 ...
}

See Also
• Relationships

• Cascading
• Lazy Fetching
• Target Entity
• Join Fetching
• Batch Reading
• Common Problems

• OneToOne
• OneToMany

Example of a ManyToOne relationship XML
<entity name="Phone" class="org.acme.Phone" access="FIELD">
 <attributes>
 <id name="id"/>
 <many-to-one name="owner" fetch="LAZY">
 <join-column name="OWNER_ID"/>
 </many-to-one>
 </attributes>
</entity>

Common Problems
Foreign key is also part of the primary key.

See Primary Keys through OneToOne Relationships.

Foreign key is also mapped as a basic.
If you use the same field in two different mappings, you typically require to make one
of them read-only using insertable, updateable = false.
See Target Foreign Keys, Primary Key Join Columns, Cascade Primary Keys.

Constraint error on insert.
This typically occurs because you have incorrectly mapped the foreign key in a
OneToOne relationship.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Cascading
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Lazy_Fetching
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Target_Entity
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Join_Fetching
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Batch_Reading
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Common_Problems
http://en.wikibooks.org/w/index.php?title=Java_Persistence/OneToOne
http://en.wikibooks.org/w/index.php?title=Java_Persistence/OneToMany
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Identity_and_Sequencing%23Primary_Keys_through_OneToOne_Relationships

Java Persistence/ Print version 99

See Target Foreign Keys, Primary Key Join Columns, Cascade Primary Keys.
It can also occur if your JPA provider does not support referential integrity, or does not
resolve bi-directional constraints. In this case you may either need to remove the
constraint, or use EntityManager flush() to ensure the order your objects are
written in.

Foreign key value is null
Ensure you set the value of the object's OneToOne, if the OneToOne is part of a
bi-directional OneToMany relationship, ensure you set the object's OneToOne when
adding an object to the OneToMany, JPA does not maintain bi-directional relationships
for you.
Also check that you defined the JoinColumn correctly, ensure you did not set
insertable, updateable = false or use a PrimaryKeyJoinColumn.

Advanced

Target Foreign Keys, Primary Key Join Columns, Cascade
Primary Keys
In complex data models it may be required to use a target foreign key, or read-only
JoinColumn in mapping a ManyToOne if the foreign key/JoinColumn is shared with other
ManyToOne or Basic mappings.
See, Target Foreign Keys, Primary Key Join Columns, Cascade Primary Keys

OneToMany

http://en.wikibooks.org/w/index.php?title=Java_Persistence/OneToOne%23Target_Foreign_Keys%2C_Primary_Key_Join_Columns%2C_Cascade_Primary_Keys
http://en.wikibooks.org/w/index.php?title=File:ObjectRelational-ManyToOne.jpg

Java Persistence/ Print version 100

A OneToMany relationship in Java is where the source object has an attribute that stores a
collection of target objects and (if) those target objects had the inverse relationship back to
the source object it would be a ManyToOne relationship. All relationships in Java and JPA
are unidirectional, in that if a source object references a target object there is no guarantee
that the target object also has a relationship to the source object. This is different than a
relational database, in which relationships are defined through foreign keys and querying
such that the inverse query always exists.
JPA also defines a ManyToMany relationship, which is similar to a OneToMany relationship
except that the inverse relationship (if it were defined) is a ManyToMany relationship. The
main difference between a OneToMany and a ManyToMany relationship in JPA is that a
ManyToMany always makes use of a intermediate relational join table to store the
relationship, where as a OneToMany can either use a join table, or a foreign key in target
object's table referencing the source object table's primary key. If the OneToMany uses a
foreign key in the target object's table JPA requires that the relationship be bi-directional
(inverse ManyToOne relationship must be defined in the target object), and the source
object must use the mappedBy attribute to define the mapping.
In JPA a OneToMany relationship is defined through the @OneToMany (https:/ / java. sun.
com/ javaee/ 5/ docs/ api/ javax/ persistence/ OneToMany. html) annotation or the
<one-to-many> element.

Example of a OneToMany relationship annotations
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @OneToMany(mappedBy="owner")
 private List<Phone> phones;
 ...
}

Join Table
A common mismatch between objects and relational tables is that a OneToMany does not
require a back reference in Java, but requires a back reference foreign key in the database.
Normally it is best to define the ManyToOne back reference in Java, if you cannot or don't
want to do this, then you can use a intermediate join table to store the relationship. This is
similar to a ManyToMany relationship, but if you add a unique constraint to the target
foreign key you can enforce that it is OneToMany.
JPA defines a join table using the @JoinTable (https:/ / java. sun. com/ javaee/ 5/ docs/ api/
javax/ persistence/ JoinTable. html) annotation and <join-table> XML element. A
JoinTable can be used on a ManyToMany or OneToMany mappings.
See also, Undirectional OneToMany

http://en.wikibooks.org/w/index.php?title=Java_Persistence/ManyToMany
https://java.sun.com/javaee/5/docs/api/javax/persistence/OneToMany.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/OneToMany.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/JoinTable.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/JoinTable.html

Java Persistence/ Print version 101

Example of a OneToMany using a JoinTable annotation
@Entity
public class Employee {
 @Id
 @Column(name="EMP_ID")
 private long id;
 ...
 @OneToMany
 @JoinTable
 (
 name="EMP_PHONE"
 joinColumns={ @JoinColumn(name="EMP_ID",
referencedColumnName="EMP_ID") }
 inverseJoinColumns={ @JoinColumn(name="PHONE_ID",
referencedColumnName="PHONE_ID") }
)
 private List<Phone> phones;
 ...
}

Example of a OneToMany relationship XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id"/>
 <one-to-many name="phones" mapped-by="owner"/>
 </attributes>
</entity>

Note this @OneToMany mapping requires an inverse @ManyToOne mapping to be complete,
see ManyToOne.

Getters and Setters
As the relationship is bi-directional so as the application updates one side of the
relationship, the other side should also get updated, and be in synch. In JPA, as in Java in
general it is the responsibility of the application, or the object model to maintain
relationships. If your application adds to one side of a relationship, then it must add to the
other side.
This can be resolved through add or set methods in the object model that handle both sides
of the relationships, so the application code does not need to worry about it. There are two
ways to go about this, you can either only add the relationship maintenance code to one
side of the relationship, and only use the setter from one side (such as making the other
side protected), or add it to both sides and ensure you avoid a infinite loop.
For example:

public class Employee {
 private List phones;
 ...

http://en.wikibooks.org/w/index.php?title=Java_Persistence/ManyToOne

Java Persistence/ Print version 102

 public void addPhone(Phone phone) {
 this.phones.add(phone);
 if (phone.getOwner() != this) {
 phone.setOwner(this);
 }
 }
 ...
}

public class Phone {
 private Employee owner;
 ...
 public void setOwner(Employee employee) {
 this.owner = employee;
 if (!employee.getPhones().contains(this)) {
 employee.getPhones().add(this);
 }
 }
 ...
}

Some expect the JPA provider to have magic that automatically maintains relationships.
This was actually part of the EJB CMP 2 specification. However the issue is if the objects
are detached or serialized to another VM, or new objects are related before being managed,
or the object model is used outside the scope of JPA, then the magic is gone, and the
application is left figuring things out, so in general it may be better to add the code to the
object model. However some JPA providers do have support for automatically maintaining
relationships.
In some cases it is undesirable to instantiate a large collection when adding a child object.
One solution is to not map the bi-directional relationship, and instead query for it as
required. Also some JPA provides optimize their lazy collection objects to handle this case,
so you can still add to the collection without instantiating it.

Example of a OneToMany using a JoinTable XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id">
 <column name="EMP_ID"/>
 </id>
 <one-to-many name="phones">
 <join-table name="EMP_PHONE">
 <join-column name="EMP_ID" referenced-column-name="EMP_ID"/>
 <inverse-join-column name="PHONE_ID" referenced-column-name="PHONE_ID"/>
 </join-table>
 </one-to-many>
 </attributes>
</entity>

Java Persistence/ Print version 103

See Also
• Relationships

• Cascading
• Lazy Fetching
• Target Entity
• Collections
• Maps
• Join Fetching
• Batch Reading
• Common Problems

• ManyToOne
• ManyToMany

Common Problems
Object not in collection after refresh.

See Object corruption.

Advanced

Undirectional OneToMany, No Inverse ManyToOne, No Join
Table (JPA 2.0)
JPA 1.0 does not support a unidirectional OneToMany relationship without a JoinTable. JPA
2.0 will have support for a unidirectional OneToMany. In JPA 2.0 a JoinColumn can be used
on a OneToMany to define the foreign key, some JPA providers may support this already.
The main issue with an unidirectional OneToMany is that the foreign key is owned by the
target object's table, so if the target object has no knowledge of this foreign key, inserting
and updating the value is difficult. In a unidirectional OneToMany the source object take
ownership of the foreign key field, and is responsible for updating its value.
The target object in a unidirectional OneToMany is an independent object, so it should not
rely on the foreign key in any way, i.e. the foreign key cannot be part of its primary key, nor
generally have a not null constraint on it. You can model a collection of objects where the
target has no foreign key mapped, but uses it as its primary key, or has no primary key
using a Embeddable collection mapping, see Embeddable Collections.
If your JPA provider does not support unidirectional OneToMany relationships, then you will
need to either add a back reference ManyToOne or a JoinTable. In general it is best to use
a JoinTable if you truely want to model a unidirectional OneToMany on the database.
There are some creative workarounds to defining a unidirectional OneToMany. One is to map
it using a JoinTable, but make the target table the JoinTable. This will cause an extra join,
but work for the most part for reads, writes of coarse will not work correctly, so this is only
a read-only solution and a hacky one at that.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Cascading
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Lazy_Fetching
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Target_Entity
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Collections
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Maps
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Join_Fetching
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Batch_Reading
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Common_Problems
http://en.wikibooks.org/w/index.php?title=Java_Persistence/ManyToOne
http://en.wikibooks.org/w/index.php?title=Java_Persistence/ManyToMany
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Object_corruption%2C_one_side_of_the_relationship_is_not_updated_after_updating_the_other_side
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Embeddables%23Collections

Java Persistence/ Print version 104

Example of a JPA 2.0 unidirectional OneToMany relationship
annotations
@Entity
public class Employee {
 @Id
 @Column(name="EMP_ID")
 private long id;
 ...
 @OneToMany
 @JoinColumn(name="EMP_ID", referencedColumnName="OWNER_ID")
 private List<Phone> phones;
 ...
}

ManyToMany
A ManyToMany relationship in Java is where the source object has an attribute that stores a
collection of target objects and (if) those target objects had the inverse relationship back to
the source object it would also be a ManyToMany relationship. All relationships in Java and
JPA are unidirectional, in that if a source object references a target object there is no
guarantee that the target object also has a relationship to the source object. This is
different than a relational database, in which relationships are defined through foreign keys
and querying such that the inverse query always exists.
JPA also defines a OneToMany relationship, which is similar to a ManyToMany relationship
except that the inverse relationship (if it were defined) is a ManyToOne relationship. The
main difference between a OneToMany and a ManyToMany relationship in JPA is that a
ManyToMany always makes use of a intermediate relational join table to store the
relationship, where as a OneToMany can either use a join table, or a foreign key in target
object's table referencing the source object table's primary key.
In JPA a ManyToMany relationship is defined through the @ManyToMany (https:/ / java. sun.
com/ javaee/ 5/ docs/ api/ javax/ persistence/ ManyToMany. html) annotation or the
<many-to-many> element.
All ManyToMany relationships require a JoinTable. The JoinTable is defined using the
@JoinTable (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ JoinTable.
html) annotation and <join-table> XML element. The JoinTable defines a foreign key to
the source object's primary key (joinColumns), and a foreign key to the target object's
primary key (inverseJoinColumns). Normally the primary key of the JoinTable is the
combination of both foreign keys.

Example of a ManyToMany relationship annotations
@Entity
public class Employee {
 @Id
 @Column(name="EMP_ID")
 private long id;
 ...

http://en.wikibooks.org/w/index.php?title=Java_Persistence/OneToMany
https://java.sun.com/javaee/5/docs/api/javax/persistence/ManyToMany.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/ManyToMany.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/JoinTable.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/JoinTable.html

Java Persistence/ Print version 105

 @ManyToMany
 @JoinTable(
 name="EMP_PROJ"
 joinColumns={@JoinColumn(name="EMP_ID",
referencedColumnName="EMP_ID")}
 inverseJoinColumns={@JoinColumn(name="PROJ_ID",
referencedColumnName="PROJ_ID")})
 private List<Project> projects;
 ...
}

Bi-directional Many to Many
...

Example of a ManyToMany relationship XML
<entity name="Employee" class="org.acme.Employee" access="FIELD">
 <attributes>
 <id name="id">
 <column name="EMP_ID"/>
 </id>
 <many-to-many name="projects">
 <join-table name="EMP_PROJ">
 <join-column name="EMP_ID" referenced-column-name="EMP_ID"/>
 <inverse-join-column name="PROJ_ID" referenced-column-name="PROJ_ID"/>
 </join-table>
 </many-to-many>
 </attributes>
</entity>

See Also
• Relationships

• Cascading
• Lazy Fetching
• Target Entity
• Collections
• Maps
• Join Fetching
• Batch Reading
• Common Problems

• OneToMany

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Cascading
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Lazy_Fetching
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Target_Entity
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Collections
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Maps
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Join_Fetching
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Batch_Reading
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Common_Problems
http://en.wikibooks.org/w/index.php?title=Java_Persistence/OneToMany

Java Persistence/ Print version 106

Common Problems
Object not in collection after refresh.

If you have a bi-directional ManyToMany relationship, ensure that you add to both sides
of the relationship.
See Object corruption.

Additional columns in join table.
See Mapping a Join Table with Additional Columns

Duplicate rows inserted into the join table.
If you have a bidirectional ManyToMany relationship, you must use mappedBy on one
side of the relationship, otherwise it will be assumed to be two difference relationships
and you will get duplicate rows inserted into the join table.

Advanced

Mapping a Join Table with Additional Columns
A frequent problem is that two classes have a ManyToMany relationship, but the relational
join table has additional data. For example if Employee has a ManyToMany with Project
but the PROJ_EMP join table also has an IS_TEAM_LEAD column. In this case the best
solution is to create a class that models the join table. So an ProjectAssociation class
would be created. It would have a ManyToOne to Employee and Project, and attributes for
the additional data. Employee and Project would have a OneToMany to the
ProjectAssociation. Some JPA providers also privide additional support for mapping to
join tables with additional data.
Unfortunately mapping this type of model becomes more complicated in JPA because it
requires a composite primary key. The association object's Id is composed of the Employee
and Project ids. The JPA spec does not allow an Id to be used on a ManyToOne so the
association class must have two duplicate attributes to also store the ids, and use an
IdClass, these duplicate attributes must be kept in synch with the ManyToOne attributes.
Some JPA providers may allow a ManyToOne to be part of an Id, so this may be simpler with
some JPA providers. To make your life simpler, I would recommend adding a generated Id
attribute to the association class. This will give the object a simpler Id and not require
duplicating the Employee and Project ids.
This same pattern can be used no matter what the additional data in the join table is.
Another usage is if you have a Map relationship between two objects, with a third unrelated
object or data representing the Map key. The JPA spec requires that the Map key be an
attribute of the Map value, so the association object pattern can be used to model the
relationship.
If the additional data in the join table is only required on the database and not used in Java,
such as auditing information, it may also be possible to use database triggers to
automatically set the data.

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Relationships%23Object_corruption%2C_one_side_of_the_relationship_is_not_updated_after_updating_the_other_side
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Identity_and_Sequencing%23Primary_Keys_through_OneToOne_Relationships

Java Persistence/ Print version 107

Example join table association object annotations
@Entity
public class Employee {
 @Id
 private long id;
 ...
 @OneToMany
 private List<ProjectAssociation> projects;
}

@Entity
public class Project {
 @Id
 private long id;
 ...
 @OneToMany
 private List<ProjectAssociation> employees;
 ...
 // Add an employee to the project.
 // Create an association object for the relationship and set its'
data.
 public void addEmployee(Employee employee, boolean teamLead) {
 ProjectAssociation association = new ProjectAssociation();
 association.setEmployee(employee);
 association.setProject(this);
 association.setEmployeeId(employee.getId());
 association.setProjectId(this.getId());
 association.setIsTeamLead(teamLead);

 employees.add(association);
 }
}

@Entity
@Table(name="PROJ_EMP")
@IdClass(ProjectAssociationId.class)
public class ProjectAssociation {
 @Id
 private long employeeId;
 @Id
 private long projectId;
 @Column("IS_PROJECT_LEAD")
 private boolean isProjectLead;
 @ManyToOne
 @PrimaryKeyJoinColumn(name="EMPLOYEEID", referencedColumnName="ID")
 private Employee employee;
 @ManyToOne
 @PrimaryKeyJoinColumn(name="PROJECTID", referencedColumnName="ID")

Java Persistence/ Print version 108

 private Project project;
 ...
}

public class ProjectAssociationId {
 @Id
 private long employeeId;
 @Id
 private long projectId;
 ...
}

Runtime
Once you have mapped your object model the second step in persistence development is to
access and process your objects from your application, this is referred to as the runtime
usage of persistence. Various persistence specifications have had various runtime models.
The most common model is to have a runtime API; a runtime API typically will define API
for connecting to a data-source, querying and transactions.

Entity Manager
JPA provides a runtime API defined by the javax.persistence (https:/ / java. sun. com/
javaee/ 5/ docs/ api/ javax/ persistence/ package-summary. html) package. The main
runtime class is the EntityManager (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ EntityManager. html) class. The EntityManager provides API for creating
queries, accessing transactions, and finding, persisting, merging and deleting objects. The
JPA API can be used in any Java environment including JSE and JEE.
An EntityManager can be created through an EntityManagerFactory (https:/ / java. sun.
com/ javaee/ 5/ docs/ api/ javax/ persistence/ EntityManagerFactory. html), or can be
injected into an instance variable in an EJB SessionBean, or can be looked up in JNDI in a
JEE server.
JPA is used differently in Java Standard Edition (JSE) versus Java Enterprise Edition (JEE).

Java Standard Edition
In JSE an EntityManager is accessed from the JPA Persistence (https:/ / java. sun. com/
javaee/ 5/ docs/ api/ javax/ persistence/ Persistence. html) class through the
createEntityManagerFactory API. The persistent unit name is passed to the
createEntityManagerFactory, this is the name given in the persistence unit's
persistence.xml file. All JSE JPA applications must define a persistence.xml file. The file
defines the persistence unit including the name, classes, orm files, datasource, vendor
specific properties.
Oddly enough JPA does not define a standard way of specifying how to connect to the
database in JSE. Each JPA provider defines their own persistence properties for setting the
JDBC driver manager class, URL, user and password. JPA has a standard way of setting the
DataSource JNDI name, but this is mainly used in JEE.

https://java.sun.com/javaee/5/docs/api/javax/persistence/package-summary.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/package-summary.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManagerFactory.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManagerFactory.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Persistence.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Persistence.html

Java Persistence/ Print version 109

The JPA application is typically required to be packaged into a persistence unit jar file. This
is a normal jar, that has the persistence.xml file in the META-INF directory. Typically a
JPA provider will require something special be done in JSE to enable certain features such
as lazy fetching, such as static weaving (byte-code processing) of the jar, or using an agent
JVM option.
In JSE the EntityManager must be closed when your application is done with it. The
life-cycle of the EntityManager is typically per client, or per request. The
EntityManagerFactory can be shared among multiple threads or users, but the
EntityManager should not be shared.

Example persistence.xml file
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
persistence_1_0.xsd"
 version="1.0">
 <persistence-unit name="acme" transaction-type="RESOURCE_LOCAL">
 <provider>org.acme.jpa.PersistenceProvider</provider>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 <property name="acme.driver" value="org.acme.db.Driver"/>
 <property name="acme.url" value="jdbc:acmedb://localhost/acme"/>
 <property name="acme.user" value="acmeuser"/>
 <property name="acme.password" value="loonytunes"/>
 </properties>
 </persistence-unit>
</persistence>

Example of accessing an EntityManager from an
EntityManagerFactory
EntityManagerFactory factory =
Persistence.createEntityManagerFactory("acme");
EntityManager entityManager = factory.createEntityManager();
...
entityManager.close();

Java Enterprise Edition
In JEE the EntityManager or EntityManagerFactory can either be looked up in JNDI, or
injected into a SessionBean. To look up the EntityManager in JNDI it must be published in
JNDI such as through a <persistence-context-ref> in a SessionBean's ejb-jar.xml file.
To inject an EntityManager or EntityManagerFactory the annotation
@PersistenceContext or @PersistenceUnit are used.
In JEE an EntityManager can either be managed (container-managed) or non-managed
(application-managed). A managed EntityManager has a different life-cycle than an

Java Persistence/ Print version 110

EntityManager managed by the application. A managed EntityManager should never be
closed, and integrates with JTA transactions so local transaction cannot be used. Across
each JTA tranaction boundary all of the entities read or persisted through a managed
EntityManager become detached. Outside of a JTA transaction a managed EntityManager's
behavoir is sometimes odd, so typically should be used inside a JTA transaction.
A non-managed EntityManager is one that is created by the application through a
EntityManagerFactory or directly from Persistence. A non-managed EntityManager
must be closed, and typically does not integrate with JTA, but this is possible through the
joinTransaction API. The entities in a non-managed EntityManager do not become
detached after a transaction completes, and can continue to be used in subsequent
transactions.

Example SessionBean ejb-jar.xml file with persistence context
<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">
 <enterprise-beans>
 <session>
 <ejb-name>EmployeeService</ejb-name>
 <business-remote>org.acme.EmployeeService</business-remote>
 <ejb-class>org.acme.EmployeeServiceBean</ejb-class>
 <session-type>Stateless</session-type>
 <persistence-context-ref>
 <persistence-context-ref-name>persistence/acme/entity-manager</persistence-context-ref-name>
 <persistence-unit-name>acme</persistence-unit-name>
 </persistence-context-ref>
 <persistence-unit-ref>
 <persistence-unit-ref-name>persistence/acme/factory</persistence-unit-ref-name>
 <persistence-unit-name>acme</persistence-unit-name>
 </persistence-unit-ref>
 </session>
 </enterprise-beans>
</ejb-jar>

Java Persistence/ Print version 111

Example of looking up an EntityManager in JNDI from a SessionBean
InitialContext context = new InitialContext();
EntityManager entityManager =
(EntityManager)context.lookup("java:comp/env/persistence/acme/entity-manager");
...

Example of looking up an EntityManagerFactory in JNDI from a
SessionBean
InitialContext context = new InitialContext();
EntityManagerFactory factory =
(EntityManagerFactory)context.lookup("java:comp/env/persistence/acme/factory");
...

Example of injecting an EntityManager and EntityManagerFactory in
a SessionBean
@Stateless(name="EmployeeService", mappedName="acme/EmployeeService")
@Remote(EmployeeService.class)
public class EmployeeServiceBean implements EmployeeService {

 @PersistenceContext(unitName="acme")
 private EntityManager entityManager;

 @PersistenceUnit(unitName="acme")
 private EntityManagerFactory factory;
 ...
}

Querying
Querying is a fundamental part of persistence. Being able to persist something is not very
useful without being able to query it back. There are many querying languages and
frameworks; the most common query language is SQL used in relational databases. JPA
uses the Java Persistence Querying Language (JPQL), which is based on the SQL language
and evolved from the EJB Query Language (EJBQL). It basically provides the SQL syntax at
the object level instead of at the data level.
Other querying languages and frameworks include:
• SQL
• EJBQL
• JDOQL
• Query By Example (QBE)
• TopLink Expressions
• Hibernate Criteria
• Object Query Language (OQL)
JPA provides querying through JPQL, the Query interface, and the @NamedQuery annotation
and <named-query> element.
JPQL is similar in syntax to SQL and can be defined through its BNF definition.

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Object_Query_Language
http://en.wikibooks.org/w/index.php?title=Java_Persistence/JPQL_BNF

Java Persistence/ Print version 112

Named Queries
There are two main types of queries in JPA, named queries and dynamic queries. A named
query is used for a static query that will be used many times in the application. The
advantage of a named query is that it can be defined once, in one place, and reused in the
application. Most JPA providers also pre-parse/compile named queries, so they are more
optimized than dynamic queries which typically must be parsed/compiled every time they
are executed. Since named queries are part of the persistence meta-data they can also be
optimized or overridden in the orm.xml without changing the application code.
Named queries are defined through the @NamedQuery (https:/ / java. sun. com/ javaee/ 5/
docs/ api/ javax/ persistence/ NamedQuery. html) and @NamedQueries (https:/ / java. sun.
com/ javaee/ 5/ docs/ api/ javax/ persistence/ NamedQueries. html) annotations, or
<named-query> XML element.
Named queries can be defined on any annotated class, but are typically defined on the
Entity that they query for. The name of the named query must be unique for the entire
persistence unit, they name is not local to the Entity. In the orm.xml named queries can be
defined either on the <entity-mappings> or on any <entity>.
Named queries are typically parametrized, so they can be executed with different
parameter values. Parameters are defined in JPQL using the :<name> syntax for named
parameters, or the ? syntax for positional parameters.
A collection of query hints can also be provided to a named query. Query hints can be used
to optimize or to provide special configuration to a query. Query hints are specific to the
JPA provider. Query hints are defined through the @QueryHint (https:/ / java. sun. com/
javaee/ 5/ docs/ api/ javax/ persistence/ QueryHint. html) annotation or query-hint XML
element.

Example named query annotation
@NamedQuery(
 name="findAllEmployeesInCity",
 query="Select emp from Employee emp where emp.address.city = :city"
 hints={@QueryHint(name="acme.jpa.batch", value="emp.address")}
)
public class Employee {
 ...
}

Example named query XML
<entity-mappings>
 <entity name="Employee" class="org.acme.Employee" access="FIELD">
 <named-query name="findAllEmployeesInCity">
 <query>Select emp from Employee emp where emp.address.city = :city</query>
 <hint name="acme.jpa.batch" value="emp.address"/>
 </named-query>
 <attributes>
 <id name="id"/>
 </attributes>

https://java.sun.com/javaee/5/docs/api/javax/persistence/NamedQuery.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/NamedQuery.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/NamedQueries.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/NamedQueries.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/QueryHint.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/QueryHint.html

Java Persistence/ Print version 113

 </entity>
</entity-mappings>

Example named query execution
EntityManager em = getEntityManager();
Query query = em.createNamedQuery("findAllEmployeesInCity");
query.setParameter("city", "Ottawa");
List<Employee> employees = query.getResultList();
...

Dynamic Queries
Dynamic queries are normally used when the query depends on the context. For example,
depending on which items in the query form were filled in, the query may have different
parameters. Dynamic queries are also useful for uncommon queries, or prototyping.
Because JPQL is a string based language, dynamic queries using JPQL typically involve
string concatenation. Some JPA providers provide more dynamic query languages, and in
JPA 2.0 a Criteria API will be provided to make dynamic queries easier.
Dynamic queries can use parameters, and query hints the same as named queries.

Example dynamic query execution
EntityManager em = getEntityManager();
Query query = em.createQuery("Select emp from Employee emp where
emp.address.city = :city");
query.setParameter("city", "Ottawa");
query.setHint("acme.jpa.batch", "emp.address");
List<Employee> employees = query.getResultList();
...

Common Queries

Inverse ManyToMany, all employees for a given project
To query all employees for a given project where the employee project relationship is a
ManyToMany.
If the relationship is bi-directional you could use:

Select project.employees from Project project where project.name = :name

If it is uni-directional you could use:

Select employee from Employee employee, Project project where
project.name = :name and project member of employee.projects

or,

Select employee from Employee employee join employee.projects project
where project.name = :name

Java Persistence/ Print version 114

How to simulate casting to a subclass
To query all employees who have a large project with a budget greater than 1,00,000 where
the employee only has a relationship to Project, not to the LargeProject subclass. JPA 1.0
JPQL does not define a cast operation (JPA 2.0 may define this), so querying on an attribute
of a subclass is not obvious. This can be done indirectly however, if you add a secondary
join to the subclass to the query.

Select employee from Employee employee join employee.projects project,
LargeProject lproject where project = lproject and lproject.budget >
1000000

Advanced

Flush Mode
Within a transaction context in JPA, changes made to the managed objects are normally not
flushed (written) to the database until commit. So if a query were executed against the
database directly, it would not see the changes made within the transaction, as these
changes are only made in memory within the Java. This can cause issues if new objects have
been persisted, or objects have been removed or changed, as the application may expect
the query to return these results. Because of this JPA requires that the JPA provider
performs a flush of all changes to the database before any query operation. This however
can cause issues if the application is not expecting that a flush as a side effect of a query
operation. If the application changes are not yet in a state to be flushed, a flush may not be
desired. Flushing also can be expensive and causes the database transaction, and database
locks are other resources to be held for the duration of the transaction, which can effect
performance and concurrency.
JPA allows the flush mode for a query to be configured using the FlushModeType (https:/ /
java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ FlushModeType. html) enum and the
Query.setFlushMode() (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/
Query. html#setFlushMode(javax. persistence. FlushModeType)) API. The flush mode is
either AUTO the default which means flush before every query execution, or COMMIT which
means only flush on commit. The flush mode can also be set on an EntityManager using
the EntityManager.setFlushMode() (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ EntityManager. html#setFlushMode(javax. persistence. FlushModeType)) API,
to affect all queries executed with the EntityManager. The EntityManager.flush()
(https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ EntityManager.
html#flush()) API can be called directly on the EntityManager anytime that a flush is
desired.
Some JPA providers also let the flush mode be configured through persistence unit
properties, or offer alternatives to flushing, such as performing the query against the in
memory objects.

https://java.sun.com/javaee/5/docs/api/javax/persistence/FlushModeType.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/FlushModeType.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html#setFlushMode(javax.persistence.FlushModeType)
https://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html#setFlushMode(javax.persistence.FlushModeType)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#setFlushMode(javax.persistence.FlushModeType)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#setFlushMode(javax.persistence.FlushModeType)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#flush()
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#flush()

Java Persistence/ Print version 115

Native SQL Queries
Typically queries in JPA are defined through JPQL. JPQL allows the queries to be defined in
terms of the object model, instead of the data model. Since developers are programming in
Java using the object model, this is normally more intuitive. This also allows for data
abstraction and database schema and database platform independence. JPQL supports
much of the SQL syntax, but some aspects of SQL, or specific database extensions or
functions may not be possible through JPQL, so native SQL queries are sometimes required.
Also some developers have more experience with SQL than JPQL, so may prefer to use SQL
queries. Native queries can also be used for calling some types of stored procedures or
executing DML or DDL operations.
Native queries are defined through the @NamedNativeQuery (https:/ / java. sun. com/
javaee/ 5/ docs/ api/ javax/ persistence/ NamedNativeQuery. html) and
@NamedNativeQueries (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/
NamedNativeQueries. html) annotations, or <named-native-query> XML element. Native
queries can also be defined dynamically using the EntityManager.createNativeQuery()
(https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ EntityManager.
html#createNativeQuery(java. lang. String)) API.
A native query can be for a query for instances of a class, a query for raw data, an update
or DML or DDL operation, or a query for a complex query result. If the query is for a class,
the resultClass attribute of the query must be set. If the query result is complex, a Result
Set Mapping can be used.
Native queries can be parameterized, so they can be executed with different parameter
values. Parameters are defined in SQL using the ? syntax for positional parameters, JPA
does not require native queries support named parameters, but some JPA providers may.
A collection of query hints can also be provided to a native query. Query hints can be used
to optimize or to provide special configuration to a query. Query hints are specific to the
JPA provider. Query hints are defined through the @QueryHint (https:/ / java. sun. com/
javaee/ 5/ docs/ api/ javax/ persistence/ QueryHint. html) annotation or query-hint XML
element.

Example native named query annotation
@NamedNativeQuery(
 name="findAllEmployeesInCity",
 query="SELECT E.* from EMP E, ADDRESS A WHERE E.EMP_ID = A.EMP_ID AND
 A.CITY = ?",
 resultClass=Employee.class
)
public class Employee {
 ...
}

https://java.sun.com/javaee/5/docs/api/javax/persistence/NamedNativeQuery.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/NamedNativeQuery.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/NamedNativeQueries.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/NamedNativeQueries.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#createNativeQuery(java.lang.String)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#createNativeQuery(java.lang.String)
https://java.sun.com/javaee/5/docs/api/javax/persistence/QueryHint.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/QueryHint.html

Java Persistence/ Print version 116

Result Set Mapping

Example native named query XML
<entity-mappings>
 <entity name="Employee" class="org.acme.Employee" access="FIELD">
 <named-native-query name="findAllEmployeesInCity" result-class="org.acme.Employee">
 <query>SELECT E.* from EMP E, ADDRESS A WHERE E.EMP_ID = A.EMP_ID AND
A.CITY = ?</query>
 </named-native-query>
 <attributes>
 <id name="id"/>
 </attributes>
 </entity>
</entity-mappings>

Example native named query execution
EntityManager em = getEntityManager();
Query query = em.createNamedQuery("findAllEmployeesInCity");
query.setParameter(0, "Ottawa");
List<Employee> employees = query.getResultList();
...

Example dynamic native query execution
EntityManager em = getEntityManager();
Query query = em.createNativeQuery("SELECT E.* from EMP E, ADDRESS A
WHERE E.EMP_ID = A.EMP_ID AND A.CITY = ?", Employee.class);
query.setParameter(0, "Ottawa");
List<Employee> employees = query.getResultList();
...

Stored Procedures
A stored procedure is a database-defined procedure typically written in a proprietary
database language, such as PL/SQL in Oracle.

JPQL BNF
The following defines the structure of the JPQL query language. For further examples and
usage see Querying.

 | = or
 [] = optional
 * = repeatable
 {} = optional

QL_statement ::= select_statement | update_statement | delete_statement

http://en.wikibooks.org/w/index.php?title=Java_Persistence/Querying

Java Persistence/ Print version 117

Select
Select employee from Employee employee join employee.address address
where address.city = :city and employee.firstName like :name order by
employee.firstName

select_statement ::= select_clause from_clause [where_clause] [groupby_clause]
[having_clause] [orderby_clause]

From
FROM Employee employee JOIN FETCH employee.address LEFT OUTER JOIN
FETCH employee.phones JOIN employee.manager manager, Employee ceo

from_clause ::= FROM identification_variable_declaration {,
{identification_variable_declaration | collection_member_declaration}}*
identification_variable_declaration ::= range_variable_declaration { join | fetch_join }*
range_variable_declaration ::= abstract_schema_name [AS] identification_variable
join ::= join_spec join_association_path_expression [AS] identification_variable
fetch_join ::= join_spec FETCH join_association_path_expression
association_path_expression ::= collection_valued_path_expression |
single_valued_association_path_expression
join_spec::= [LEFT [OUTER] | INNER] JOIN
join_association_path_expression ::= join_collection_valued_path_expression |
join_single_valued_association_path_expression
join_collection_valued_path_expression::=
identification_variable.collection_valued_association_field
join_single_valued_association_path_expression::=
identification_variable.single_valued_association_field
collection_member_declaration ::= IN (collection_valued_path_expression) [AS]
identification_variable
single_valued_path_expression ::= state_field_path_expression |
single_valued_association_path_expression
state_field_path_expression ::= {identification_variable |
single_valued_association_path_expression}.state_field
single_valued_association_path_expression ::=
identification_variable.{single_valued_association_field.}* single_valued_association_field
collection_valued_path_expression ::=
identification_variable.{single_valued_association_field.}*collection_valued_association_field
state_field ::= {embedded_class_state_field.}*simple_state_field

Java Persistence/ Print version 118

Select Clause
SELECT employee.id, employee.phones

SELECT DISTINCT employee.address.city, NEW
com.acme.EmployeeInfo(AVG(employee.salary), MAX(employee.salary))

select_clause ::= SELECT [DISTINCT] select_expression {, select_expression}*
select_expression ::= single_valued_path_expression | aggregate_expression |
identification_variable | OBJECT(identification_variable) | constructor_expression
constructor_expression ::= NEW constructor_name (constructor_item {,
constructor_item}*)
constructor_item ::= single_valued_path_expression | aggregate_expression
aggregate_expression ::= { AVG | MAX | MIN | SUM } ([DISTINCT]
state_field_path_expression) | COUNT ([DISTINCT] identification_variable |
state_field_path_expression | single_valued_association_path_expression)

Where
WHERE employee.firstName = :name AND employee.address.city LIKE 'Ott%'
ESCAPE '/' OR employee.id IN (1, 2, 3) AND (employee.salary * 2) > 40000

where_clause ::= WHERE conditional_expression
conditional_expression ::= conditional_term | conditional_expression OR conditional_term
conditional_term ::= conditional_factor | conditional_term AND conditional_factor
conditional_factor ::= [NOT] conditional_primary
conditional_primary ::= simple_cond_expression | (conditional_expression)
simple_cond_expression ::= comparison_expression | between_expression | like_expression |
in_expression | null_comparison_expression | empty_collection_comparison_expression |
collection_member_expression | exists_expression
between_expression ::= arithmetic_expression [NOT] BETWEEN arithmetic_expression
AND arithmetic_expression | string_expression [NOT] BETWEEN string_expression AND
string_expression | datetime_expression [NOT] BETWEEN datetime_expression AND
datetime_expression
in_expression ::= state_field_path_expression [NOT] IN (in_item {, in_item}* | subquery)
in_item ::= literal | input_parameter
like_expression ::= string_expression [NOT] LIKE pattern_value [ESCAPE
escape_character]
null_comparison_expression ::= {single_valued_path_expression | input_parameter} IS
[NOT] NULL
empty_collection_comparison_expression ::= collection_valued_path_expression IS [NOT]
EMPTY
collection_member_expression ::= entity_expression [NOT] MEMBER [OF]
collection_valued_path_expression
exists_expression::= [NOT] EXISTS (subquery)
all_or_any_expression ::= { ALL | ANY | SOME} (subquery)

Java Persistence/ Print version 119

comparison_expression ::= string_expression comparison_operator {string_expression |
all_or_any_expression} | boolean_expression { =|<>} {boolean_expression |
all_or_any_expression} | enum_expression { =|<>} {enum_expression |
all_or_any_expression} | datetime_expression comparison_operator {datetime_expression |
all_or_any_expression} | entity_expression { = | <> } {entity_expression |
all_or_any_expression} | arithmetic_expression comparison_operator
{arithmetic_expression | all_or_any_expression}
comparison_operator ::= = | > | >= | < | <= | <>
arithmetic_expression ::= simple_arithmetic_expression | (subquery)
simple_arithmetic_expression ::= arithmetic_term | simple_arithmetic_expression { + | - }
arithmetic_term
arithmetic_term ::= arithmetic_factor | arithmetic_term { * | / } arithmetic_factor
arithmetic_factor ::= [{ + | - }] arithmetic_primary
arithmetic_primary ::= state_field_path_expression | numeric_literal |
(simple_arithmetic_expression) | input_parameter | functions_returning_numerics |
aggregate_expression
string_expression ::= string_primary | (subquery)
string_primary ::= state_field_path_expression | string_literal | input_parameter |
functions_returning_strings | aggregate_expression
datetime_expression ::= datetime_primary | (subquery)
datetime_primary ::= state_field_path_expression | input_parameter |
functions_returning_datetime | aggregate_expression
boolean_expression ::= boolean_primary | (subquery)
boolean_primary ::= state_field_path_expression | boolean_literal | input_parameter |
enum_expression ::= enum_primary | (subquery)
enum_primary ::= state_field_path_expression | enum_literal | input_parameter |
entity_expression ::= single_valued_association_path_expression | simple_entity_expression
simple_entity_expression ::= identification_variable | input_parameter

Functions
LENGTH(SUBSTRING(UPPER(CONCAT('FOO', :bar)), 1, 5))

functions_returning_numerics::= LENGTH(string_primary) | LOCATE(string_primary,
string_primary[, simple_arithmetic_expression]) | ABS(simple_arithmetic_expression) |
SQRT(simple_arithmetic_expression) | MOD(simple_arithmetic_expression,
simple_arithmetic_expression) | SIZE(collection_valued_path_expression)
functions_returning_datetime ::= CURRENT_DATE| CURRENT_TIME |
CURRENT_TIMESTAMP
functions_returning_strings ::= CONCAT(string_primary, string_primary) |
SUBSTRING(string_primary, simple_arithmetic_expression, simple_arithmetic_expression)|
TRIM([[trim_specification] [trim_character] FROM] string_primary) |
LOWER(string_primary) | UPPER(string_primary)
trim_specification ::= LEADING | TRAILING | BOTH

Java Persistence/ Print version 120

Group By
GROUP BY employee.address.country, employee.address.city HAVING
COUNT(employee.id) > 500

groupby_clause ::= GROUP BY groupby_item {, groupby_item}*
groupby_item ::= single_valued_path_expression | identification_variable
having_clause ::= HAVING conditional_expression

Order By
ORDER BY employee.address.country, employee.address.city DESC

orderby_clause ::= ORDER BY orderby_item {, orderby_item}*
orderby_item ::= state_field_path_expression [ASC | DESC]

Subquery
WHERE employee.salary = (SELECT MAX(wellPaid.salary) FROM Employee
wellPaid)

subquery ::= simple_select_clause subquery_from_clause [where_clause] [groupby_clause]
[having_clause]
subquery_from_clause ::= FROM subselect_identification_variable_declaration {,
subselect_identification_variable_declaration}*
subselect_identification_variable_declaration ::= identification_variable_declaration |
association_path_expression [AS] identification_variable | collection_member_declaration
simple_select_clause ::= SELECT [DISTINCT] simple_select_expression
simple_select_expression::= single_valued_path_expression | aggregate_expression |
identification_variable

Update
UPDATE Employee SET salary = salary * 2 WHERE address.city = :city

update_statement ::= update_clause [where_clause]
update_clause ::= UPDATE abstract_schema_name [[AS] identification_variable] SET
update_item {, update_item}*
update_item ::= [identification_variable.]{state_field | single_valued_association_field} =
new_value
new_value ::= simple_arithmetic_expression | string_primary | datetime_primary |
boolean_primary | enum_primary simple_entity_expression | NULL

Java Persistence/ Print version 121

Delete
DELETE FROM Employee WHERE address.city = :city

delete_statement ::= delete_clause [where_clause]
delete_clause ::= DELETE FROM abstract_schema_name [[AS] identification_variable]

Persisting
JPA uses the EntityManager (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ EntityManager. html) API for runtime usage. The EntityManager represents
the application session or dialog with the database. Each request, or each client will use its
own EntityManager to access the database. The EntityManager also represents a
transaction context, and in a typical stateless model an new EntityManager is created for
each transaction. In a stateful model, and EntityManager may match the lifecycle of a
client's session.
The EntityManager provides API for all required persistence operations. These includes
CRUD operations including:
• persist (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ EntityManager.

html#persist(java. lang. Object)) (INSERT)
• merge (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ EntityManager.

html#merge(java. lang. Object)) (UPDATE)
• remove (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ EntityManager.

html#remove(java. lang. Object)) (DELETE)
• find (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/ persistence/ EntityManager.

html#find(java. lang. Class,java. lang. Object)) (SELECT)
The EntityManager is an object-oriented API, so does not map directly onto database SQL
or DML operations. For example to update an object, you just need to read the object and
change its state through its set methods, and then call commit on the transaction. The
EntityManager figures out which objects you changed and performs the correct updates to
the database, there is no explicit update operation in JPA.

Persist
The EntityManager.persist() (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ EntityManager. html#persist(java. lang. Object)) operation is used to insert a
new object into the database. persist does not directly insert the object into the database,
it just registers it as new in the persistence context (transaction). When the transaction is
committed, or if the persistence context is flushed, then the object will be inserted into the
database.
If the object uses a generated Id, the Id will normally be assigned to the object when
persist is called, so persist can also be used to have an object's Id assigned. The one
exception is if IDENTITY sequencing is used, in this case the Id is only assigned on commit
or flush because the database will only assign the Id on INSERT. If the object does not use
a generated Id, you should normally assign its Id before calling persist.
The persist operation can only be called within a transaction, an exception will be thrown
outside of a transaction. The persist operation is in-place, in that the object being
persisted will become part of the persistence context. The state of the object at the point of

https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#persist(java.lang.Object)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#persist(java.lang.Object)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#merge(java.lang.Object)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#merge(java.lang.Object)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#remove(java.lang.Object)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#remove(java.lang.Object)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#find(java.lang.Class,java.lang.Object)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#find(java.lang.Class,java.lang.Object)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#persist(java.lang.Object)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#persist(java.lang.Object)

Java Persistence/ Print version 122

the commit of the transaction will be persisted, not its state at the point of the persist
call.
persist should normally only be called on new objects. It is allowed to be called on existing
objects if they are part of the persistence context, this is only for the purpose of cascading
persist to any possible related new objects. If persist is called on an existing object that is
not part of the persistence context, then an exception may be thrown, or it may be
attempted to be inserted and a database constraint error may occur, or if no constraints are
defined, it may be possible to have duplicate data inserted.
persist can only be called on Entity objects, not on Embeddable objects, or collections, or
non-persistent objects. Embeddable objects are automatically persisted as part of their
owning Entity.
Calling persist is not always required. If you related a new object to an existing object
that is part of the persistence context, and the relationship is cascade persist, then it will be
automatically inserted when the transaction is committed, or when the persistence context
is flushed.

Example persist
EntityManager em = getEntityManager();
em.getTransaction().begin();

Employee employee = new Employee();
employee.setFirstName("Bob");
Address address = new Address();
address.setCity("Ottawa");
employee.setAddress(address);

em.persist(employee);

em.getTransaction().commit();

Cascading Persist
Calling persist on an object will also cascade the persist operation to across any
relationship that is marked as cascade persist. If a relationship is not cascade persist, and a
related object is new, then an exception may be thrown if you do not first call persist on
the related object. Intuitively you may consider marking every relationship as cascade
persist to avoid having to worry about calling persist on every objects, but this can also lead
to issues.
One issue with marking all relationships cascade persist is performance. On each persist
call all of the related objects will need to be traversed and checked if they reference any
new objects. This can actually lead to n^2 performance issues if you mark all relationships
cascade persist, and persist a large new graph of objects. If you just call persist on the
root object, this is ok. However, if you call persist on each object in the graph, then you
will traverse the entire graph for each object in the graph, and this can lead to a major
performance issue. The JPA spec should probably define persist to only apply to new
objects, not already part of the persistence context, but it requires persist apply to all
objects, whether new, existing, or already persisted, so can have this issue.

Java Persistence/ Print version 123

A second issue is that if you remove an object to have it deleted, if you then call persist
on the object, it will resurrect the object, and it will become persistent again. This may be
desired if it is intentional, but the JPA spec also requires this behavior for cascade persist.
So if you remove an object, but forget to remove a reference to it from a cascade persist
relationship, the remove will be ignored.
I would recommend only marking relationships that are composite or privately owned as
cascade persist.

Merge
The EntityManager.merge() (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ EntityManager. html#merge(java. lang. Object)) operation is used to merge
the changes made to a detached object into the persistence context. merge does not
directly update the object into the database, it merges the changes into the persistence
context (transaction). When the transaction is committed, or if the persistence context is
flushed, then the object will be updated in the database.
Normally merge is not required, although it is frequently misused. To update an object you
simply need to read it, then change its state through its set methods, then commit the
transaction. The EntityManager will figure out everything that has been changed and
update the database. merge is only required when you have a detached copy of a
persistence object. A detached object is one that was read through a different
EntityManager (or in a different transaction in a JEE managed EntityManager), or one that
was cloned, or serialized. A common case is a stateless SessionBean where the object is
read in one transaction, then updated in another transaction. Since the update is processed
in a different transaction, with a different EntityManager, it must first be merged. The
merge operation will look-up/find the managed object for the detached object, and copy
each of the detached objects attributes that changed into the managed object, as well as
cascading any related objects marked as cascade merge.
The merge operation can only be called within a transaction, an exception will be thrown
outside of a transaction. The merge operation is not in-place, in that the object being
merged will never become part of the persistence context. Any further changes must be
made to the managed object returned by the merge, not the detached object.
merge is normally called on existing objects, but can also be called on new objects. If the
object is new, a new copy of the object will be made and registered with the persistence
context, the detached object will not be persisted itself.
merge can only be called on Entity objects, not on Embeddable objects, or collections, or
non-persistent objects. Embeddable objects are automatically merged as part of their
owning Entity.

Example merge
EntityManager em = createEntityManager();
Employee detached = em.find(Employee.class, id);
em.close();
...
em = createEntityManager();
em.getTransaction().begin();
Employee managed = em.merge(detached);

https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#merge(java.lang.Object)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#merge(java.lang.Object)

Java Persistence/ Print version 124

em.getTransaction().commit();

Cascading Merge
Calling merge on an object will also cascade the merge operation across any relationship
that is marked as cascade merge. Even if the relationship is not cascade merge, the
reference will still be merged. If the relationship is cascade merge the relationship and
each related object will be merged. Intuitively you may consider marking every relationship
as cascade merge to avoid having to worry about calling merge on every objects, but this is
normally a bad idea.
One issue with marking all relationships cascade merge is performance. If you have an
object with a lot of relationships, the each merge call can require to traverse a large graph
of objects.
Another issues is that your detached object is corrupt in one way or another. By this I mean
you have, for example, an Employee who has a manager, but that manager has a different
copy of the detached Employee object as its managedEmployee. This may cause the same
object to be merged twice, or at least may not be consistent which object will be merged, so
you may not get the changes you expect merged. The same is true if you didn't change an
object at all, but some other user did, if merge cascades to this unchanged object, it will
revert the other user's changes, or throw an OptimisticLockException (depending on
your locking policy). This is normally not desirable.
I would recommend only marking relationships that are composite or privately owned as
cascade merge.

Transient Variables
Another issue with merge is transient variables. Since merge is normally used with object
serialization, if a relationship was marked as transient (Java transient, not JPA transient),
then the detached object will contain null, and null will be merged into the object, even
though it is not desired. This will occur even if the relationship was not cascade merge, as
merge always merges the references to related objects. Normally transient is required when
using serialization to avoid serializing the entire database when only a single, or small set
of objects are required.
One solution is to avoid marking anything transient, and instead use LAZY relationships is
JPA to limit what is serialized (lazy relationships that have not been accessed, will normally
not be serialized). Another solution is to manually merge in your own code.
Some JPA provides provide extended merge operations, such as allowing a shallow merge
or deep merge, or merging without merging references.

Remove
The EntityManager.remove() (https:/ / java. sun. com/ javaee/ 5/ docs/ api/ javax/
persistence/ EntityManager. html#remove(java. lang. Object)) operation is used to delete
an object from the database. remove does not directly delete the object from the database,
it marks the object to be deleted in the persistence context (transaction). When the
transaction is committed, or if the persistence context is flushed, then the object will be
deleted from the database.

https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#remove(java.lang.Object)
https://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html#remove(java.lang.Object)

Java Persistence/ Print version 125

The remove operation can only be called within a transaction, an exception will be thrown
outside of a transaction. The remove operation must be called on a managed object, not on
a detached object. Generally you must first find the object before removing it, although it
is possible to call EntityManager.getReference() on the object's Id and call remove on
the reference. Depending on how you JPA provider optimizes getReference and remove, it
may not require reading the object from the database.
remove can only be called on Entity objects, not on Embeddable objects, or collections, or
non-persistent objects. Embeddable objects are automatically removed as part of their
owning Entity.

Example merge
EntityManager em = getEntityManager();
em.getTransaction().begin();
Employee employee = em.find(Employee.class, id);
em.remove(employee);
em.getTransaction().commit();

Cascading Remove
Calling remove on an object will also cascade the remove operation across any relationship
that is marked as cascade remove.
Note that cascade remove only effects the remove call. If you have a relationship that is
cascade remove, and remove an object from the collection, or dereference an object, it will
not be removed. You must explicitly call remove on the object to have it deleted. Some JPA
providers provide an extension to provide this behavior, and in JPA 2.0 there will be an
orphanRemoval option on OneToMany and OneToOne mappings to provide this.

Reincarnation
Normally an object that has been removed, stays removed, but in some cases you may need
to bring the object back to life. This normally occurs with natural ids, not generated ones,
where a new object would always get an new id. Generally the desire to reincarnate an
object occurs from a bad object model design, normally the desire to change the class type
of an object (which cannot be done in Java, so a new object must be created). Normally the
best solution is to change your object model to have your object hold a type object which
defines its type, instead of using inheritance. But sometimes reincarnation is desirable.
When done it two separate transactions, this is normally fine, first you remove the object,
then you persist it back. This can be more complex if you wish to remove and persist an
object with the same Id in the same transaction. If you call remove on an object, then call
persist on the same object, it will simply no longer be removed. If you call remove on an
object, then call persist on a different object with the same Id the behavior may depend
on your JPA provider, and probably will not work. If you call flush after calling remove,
then call persist, then the object should be successfully reincarnated. Note that it will be a
different row, the existing row will have been deleted, and a new row inserted. If you wish
the same row to be updated, you may need to resort to using a native SQL update query.

Java Persistence/ Print version 126

Advanced

Get Reference

Clear

Get Delegate
A transaction is a set of operations that either fail or succeed as a unit. Transactions are a
fundamental part of persistence. A database transaction consists of a set of SQL DML (Data
Manipulation Language) operations that are committed or rolled back as a single unit. An
object level transaction is one in which a set of changes made to a set of objects are
committed to the database as a single unit.
JPA provides two mechanisms for transactions. When used in JEE JPA provides integration
with JTA (Java Transaction API). JPA also provides its own Transaction implementation for
JSE and for use in a non-managed mode in JEE. Transactions in JPA are always at the object
level, this means that all changes made to all persistent objects in the persistence context
are part of the transaction.

Caching
Caching is the most important performance optimization technique. There are many things
that can be cached in persistence, objects, data, database connections, database
statements, query results, meta-data, relationships, to name a few. Caching in object
persistence normally refers to the caching of objects or their data. Caching also influences
object identity, that is that if you read an object, then read the same object again you
should get the identical object back (same reference).
JPA does not define a server object cache, JPA providers can support a server object cache
or not, however most do. Caching in JPA is required with-in a transaction or within an
extended persistence context to preserve object identity, but JPA does not require that
caching be supported across transactions or persistence contexts.
There are two types of object caching. You can cache the objects themselves including all of
their structure and relationships, or you can cache their database row data. Both provide a
benefit, however just caching the row data is missing a huge part of the caching benefit as
the retrieval of each relationship typically involves a database query, and the bulk of the
cost of reading an object is spent in retrieving its relationships.

http://en.wikipedia.org/wiki/Database_transaction
http://en.wikipedia.org/wiki/Data_Manipulation_Language
http://en.wikipedia.org/wiki/Java_Enterprise_Edition
http://en.wikipedia.org/wiki/Java_Transaction_API
http://en.wikipedia.org/wiki/Java_Standard_Edition

Java Persistence/ Print version 127

Data Cache

Object Identity

Stale Data

Refreshing

Caching in a Cluster

Databases

MySQL
Using MySQL with Java Persistence API is quite straightforward as the JDBC driver is
available directly from MySQL web site (http:/ / dev. mysql. com/).
MySQL Connector/J is the official JDBC driver for MySQL and has a good documentation
available directly on the web site.
In this page we will see some aspects of managing MySQL using the Persistence API.

Installing
Installation is straightforward and consists in making the .jar file downloaded from MySQL
web site visible to the JVM. It can be already installed if you are using Apache or JBOSS.

Configuration tips
You can learn a lot from the documentation on MySQL web site (http:/ / dev. mysql. com/
doc/ refman/ 5. 0/ en/ connector-j-reference-configuration-properties. html).

Creating the database automatically
If you intend to create table and a database automatically , you will need to have the
correct user rights but also inform the Persistence API about the name of the Database you
want to create. For example with TopLink, if you used:

 <property name="toplink.ddl-generation" value="create-tables"/>

in the property.xml, you will be likely need to create a new database. To create the
database "NewDB" automatically, you need to give the following URL to the jdbc
connection:

 <property name="toplink.jdbc.url"
value="jdbc:mysql://localhost:3306/NewDB?createDatabaseIfNotExist=true"/>

If not, the persistence API will complain that the database does not exist.

http://dev.mysql.com/
http://dev.mysql.com/doc/refman/5.0/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/refman/5.0/en/connector-j-reference-configuration-properties.html

Java Persistence/ Print version 128

References

Resources
• EJB 3.0 JPA 1.0 Spec (http:/ / jcp. org/ aboutJava/

communityprocess/ final/ jsr220/ index. html)
• JPA 2.0 Spec (http:/ / jcp. org/ en/ jsr/

detail?id=317)
• JPA 1.0 ORM XML Schema (http:/ / java. sun. com/

xml/ ns/ persistence/ orm_1_0. xsd)
• JPA 1.0 Persistence XML Schema (http:/ / java. sun.

com/ xml/ ns/ persistence/ persistence_1_0. xsd)
• JPA 1.0 JavaDoc (https:/ / java. sun. com/ javaee/ 5/

docs/ api/ javax/ persistence/ package-summary.
html)

• JPQL BNF
• JPA 2.0 Reference Implementation Development

(http:/ / wiki. eclipse. org/ EclipseLink/
Development/ JPA)

• Java Programming

Wikis
• EclipseLink Wiki (http:/ / wiki. eclipse. org/

EclipseLink)
• Oracle TopLink Wiki (http:/ / wiki. oracle. com/ page/

TopLink)
• Glassfish TopLink Essentials Wiki (http:/ / wiki.

glassfish. java. net/ Wiki.
jsp?page=TopLinkEssentials)

• Hibernate Wiki (http:/ / www. hibernate. org/ 37.
html)

• JPA on Wikipedia (http:/ / en. wikipedia. org/ wiki/
Java_Persistence_API)

• JPA on Javapedia (http:/ / wiki. java. net/ bin/ view/
Javapedia/ JPA)

• JPA on freebase (http:/ / www. freebase. com/ view/
guid/ 9202a8c04000641f8000000004666d33)

• JPA on DMOZ (Open Directory) (http:/ / www. dmoz.
org/ Computers/ Programming/ Languages/ Java/
Databases_and_Persistence/ Object_Persistence/ JPA/
)

Forums
• Sun EJB Forum (http:/ / forum. java. sun. com/

forum. jspa?forumID=13)
• JavaRanch ORM Forum (http:/ / saloon. javaranch.

com/ cgi-bin/ ubb/ ultimatebb. cgi?ubb=forum&
f=78)

• Nabble JPA Forum (http:/ / www. nabble. com/
JPA-f27109. html)

• EclipseLink Forum (http:/ / www. nabble. com/
EclipseLink-f26430. html)

• EclipseLink Newsgroup (http:/ / www. eclipse. org/
newsportal/ thread. php?group=eclipse. rt.
eclipselink)

• Oracle TopLink Forum (http:/ / forums. oracle. com/
forums/ forum. jspa?forumID=48)

• Hibernate Forum (http:/ / forum. hibernate. org/)
• TopLink Essentials Mailing List (Glassfish

persistence) (http:/ / www. nabble. com/ java.
net---glassfish-persistence-f13455. html)

Products
• Oracle TopLink Home (http:/ / www. oracle. com/

technology/ products/ ias/ toplink/ index. html)
• EclipseLink Home (http:/ / www. eclipse. org/

eclipselink/)
• TopLink Essentials Home (https:/ / glassfish. dev. java.

net/ javaee5/ persistence/)
• Hibernate Home (http:/ / www. hibernate. org/)
• Open JPA Home (http:/ / openjpa. apache. org/)
• HiberObjects (http:/ / objectgeneration. com/ eclipse/)

http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_app_reminders.png
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=317
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
https://java.sun.com/javaee/5/docs/api/javax/persistence/package-summary.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/package-summary.html
https://java.sun.com/javaee/5/docs/api/javax/persistence/package-summary.html
http://en.wikibooks.org/w/index.php?title=Java_Persistence/Print_version/JPQL_BNF
http://wiki.eclipse.org/EclipseLink/Development/JPA
http://wiki.eclipse.org/EclipseLink/Development/JPA
http://en.wikibooks.org/w/index.php?title=Java_Programming
http://en.wikibooks.org/w/index.php?title=File:Wikipedia.png
http://wiki.eclipse.org/EclipseLink
http://wiki.eclipse.org/EclipseLink
http://wiki.oracle.com/page/TopLink
http://wiki.oracle.com/page/TopLink
http://wiki.glassfish.java.net/Wiki.jsp?page=TopLinkEssentials
http://wiki.glassfish.java.net/Wiki.jsp?page=TopLinkEssentials
http://wiki.glassfish.java.net/Wiki.jsp?page=TopLinkEssentials
http://www.hibernate.org/37.html
http://www.hibernate.org/37.html
http://en.wikipedia.org/wiki/Java_Persistence_API
http://en.wikipedia.org/wiki/Java_Persistence_API
http://wiki.java.net/bin/view/Javapedia/JPA
http://wiki.java.net/bin/view/Javapedia/JPA
http://www.freebase.com/view/guid/9202a8c04000641f8000000004666d33
http://www.freebase.com/view/guid/9202a8c04000641f8000000004666d33
http://www.dmoz.org/Computers/Programming/Languages/Java/Databases_and_Persistence/Object_Persistence/JPA/
http://www.dmoz.org/Computers/Programming/Languages/Java/Databases_and_Persistence/Object_Persistence/JPA/
http://www.dmoz.org/Computers/Programming/Languages/Java/Databases_and_Persistence/Object_Persistence/JPA/
http://www.dmoz.org/Computers/Programming/Languages/Java/Databases_and_Persistence/Object_Persistence/JPA/
http://en.wikibooks.org/w/index.php?title=File:Nuvola_apps_edu_languages.svg
http://forum.java.sun.com/forum.jspa?forumID=13
http://forum.java.sun.com/forum.jspa?forumID=13
http://saloon.javaranch.com/cgi-bin/ubb/ultimatebb.cgi?ubb=forum&f=78
http://saloon.javaranch.com/cgi-bin/ubb/ultimatebb.cgi?ubb=forum&f=78
http://saloon.javaranch.com/cgi-bin/ubb/ultimatebb.cgi?ubb=forum&f=78
http://www.nabble.com/JPA-f27109.html
http://www.nabble.com/JPA-f27109.html
http://www.nabble.com/EclipseLink-f26430.html
http://www.nabble.com/EclipseLink-f26430.html
http://www.eclipse.org/newsportal/thread.php?group=eclipse.rt.eclipselink
http://www.eclipse.org/newsportal/thread.php?group=eclipse.rt.eclipselink
http://www.eclipse.org/newsportal/thread.php?group=eclipse.rt.eclipselink
http://forums.oracle.com/forums/forum.jspa?forumID=48
http://forums.oracle.com/forums/forum.jspa?forumID=48
http://forum.hibernate.org/
http://www.nabble.com/java.net---glassfish-persistence-f13455.html
http://www.nabble.com/java.net---glassfish-persistence-f13455.html
http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_app_desktopshare.png
http://www.oracle.com/technology/products/ias/toplink/index.html
http://www.oracle.com/technology/products/ias/toplink/index.html
http://www.eclipse.org/eclipselink/
http://www.eclipse.org/eclipselink/
https://glassfish.dev.java.net/javaee5/persistence/
https://glassfish.dev.java.net/javaee5/persistence/
http://www.hibernate.org/
http://openjpa.apache.org/
http://objectgeneration.com/eclipse/

Java Persistence/ Print version 129

Blogs
• Java Persistence (http:/ / java-persistence. blogspot.

com/) (Doug Clarke)
• System.out (http:/ / jroller. com/ mkeith/) (Mike

Keith)
• On TopLink (http:/ / ontoplink. blogspot. com/)

(Shaun Smith)
• EclipseLink (http:/ / eclipselink. blogspot. com/)
• Hibernate Blog (http:/ / blog. hibernate. org/)

Books
• Pro EJB 3 (http:/ / www. amazon. com/ gp/ product/

1590596455/ 102-2412923-9620152?v=glance&
n=283155)

http://java-persistence.blogspot.com/
http://java-persistence.blogspot.com/
http://jroller.com/mkeith/
http://ontoplink.blogspot.com/
http://eclipselink.blogspot.com/
http://blog.hibernate.org/
http://www.amazon.com/gp/product/1590596455/102-2412923-9620152?v=glance&n=283155
http://www.amazon.com/gp/product/1590596455/102-2412923-9620152?v=glance&n=283155
http://www.amazon.com/gp/product/1590596455/102-2412923-9620152?v=glance&n=283155

Article Sources and Contributors 130

Article Sources and Contributors
Java Persistence/ Print version Source: http://en.wikibooks.org/w/index.php?oldid=1569890 Contributors: Jamesssss

Image Sources, Licenses and
Contributors
Image:Java-persistence.PNG Source: http://en.wikibooks.org/w/index.php?title=File:Java-persistence.PNG License: Public Domain Contributors:
Jamesssss
Image:Vraagteken.svg Source: http://en.wikibooks.org/w/index.php?title=File:Vraagteken.svg License: Public Domain Contributors: Roland Geider
Image:Crystal Clear app Community Help.png Source: http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_app_Community_Help.png
 License: unknown Contributors: Abu badali, CyberSkull, It Is Me Here, Martin Kozák, OsamaK
Image:Crystal Clear app kcoloredit.png Source: http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_app_kcoloredit.png License: unknown
 Contributors: AVRS, CyberSkull, It Is Me Here
Image:Litchar.png Source: http://en.wikibooks.org/w/index.php?title=File:Litchar.png License: GNU Lesser General Public License Contributors:
User:Pegship
Image:Employee-model.PNG Source: http://en.wikibooks.org/w/index.php?title=File:Employee-model.PNG License: Public Domain Contributors:
Jamesssss
Image:EMPLOYEE Table (Database).PNG Source: http://en.wikibooks.org/w/index.php?title=File:EMPLOYEE_Table_(Database).PNG License: Public
Domain Contributors: User:Jamesssss
Image:Emp Tables (Database).PNG Source: http://en.wikibooks.org/w/index.php?title=File:Emp_Tables_(Database).PNG License: Public Domain
 Contributors: User:Jamesssss
Image:Emp Add Tables (Database).PNG Source: http://en.wikibooks.org/w/index.php?title=File:Emp_Add_Tables_(Database).PNG License: Public
Domain Contributors: User:Jamesssss
Image:Emp Adds Tables (Database).PNG Source: http://en.wikibooks.org/w/index.php?title=File:Emp_Adds_Tables_(Database).PNG License: Public
Domain Contributors: User:Jamesssss
File:Crystal_Clear_app_password.png Source: http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_app_password.png License: unknown
 Contributors: Color probe, CyberSkull
Image:Cascaded-keys.PNG Source: http://en.wikibooks.org/w/index.php?title=File:Cascaded-keys.PNG License: Public Domain Contributors:
User:Jamesssss
Image:Inheritance.PNG Source: http://en.wikibooks.org/w/index.php?title=File:Inheritance.PNG License: Public Domain Contributors: Jamesssss
Image:embeddable.PNG Source: http://en.wikibooks.org/w/index.php?title=File:Embeddable.PNG License: Public Domain Contributors: Jamesssss
Image:ObjectRelational-OneToOne.jpg Source: http://en.wikibooks.org/w/index.php?title=File:ObjectRelational-OneToOne.jpg License: Public
Domain Contributors: User:Jamesssss
Image:ObjectRelational-ManyToOne.jpg Source: http://en.wikibooks.org/w/index.php?title=File:ObjectRelational-ManyToOne.jpg License: Public
Domain Contributors: User:Jamesssss
Image:Crystal Clear app reminders.png Source: http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_app_reminders.png License: unknown
 Contributors: CyberSkull, Ysangkok
Image:Wikipedia.png Source: http://en.wikibooks.org/w/index.php?title=File:Wikipedia.png License: logo Contributors: Avatar, Mac, Schaengel89,
¡0-8-15!
Image:Nuvola apps edu languages.svg Source: http://en.wikibooks.org/w/index.php?title=File:Nuvola_apps_edu_languages.svg License: GNU Lesser
General Public License Contributors: User:Stannered
Image:Crystal Clear app desktopshare.png Source: http://en.wikibooks.org/w/index.php?title=File:Crystal_Clear_app_desktopshare.png License:
unknown Contributors: CyberSkull

License
Creative Commons Attribution-Share Alike 3.0 Unported
http:/ / creativecommons. org/ licenses/ by-sa/ 3. 0/

http://creativecommons.org/licenses/by-sa/3.0/

	Java Persistence/Print version
	Contents
	Preface
	What is this book about?
	Intended Audience
	Style
	Authors
	What is Java persistence?
	What is Java?
	Google Trends
	See also
	What is a database?
	What is JPA?
	What is new in JPA 2.0?
	Resources
	Other Persistence Specs
	Why use JPA or ORM?
	Reasons for ORM
	Reasons for JPA
	Discussions on JPA and ORM Usage
	Persistence Products
	Existing Persistence Products
	EclipseLink
	TopLink
	Hibernate
	TopLink Essentials
	Kodo
	Open JPA
	Mapping
	Example object model
	Common Problems
	My annotations are ignored
	Example of a persistent entity mappings in annotations
	Example of a persistent entity mappings in XML
	Odd behavior
	Tables
	Example mapping annotations for an entity with a single table
	Example mapping XML for an entity with a single table
	Advanced
	Multiple tables
	Example mapping annotations for an entity with multiple tables
	Example mapping XML for an entity with multiple tables
	Multiple tables with foreign keys
	Multiple table joins
	Multiple table outer joins
	Tables with special characters and mixed case
	Table qualifiers, schemas, or creators
	Example mapping annotations for an entity with a qualified table
	Example mapping XML for default (entire persistence unit) table qualifier
	Example mapping XML for default (orm file) table qualifier
	Identity
	Example id annotation
	Example id XML
	Common Problems
	Sequencing
	Example generated id annotation
	Sequence Strategies
	Table sequencing
	Example table generator annotation
	Example generated id XML
	Example table generator XML
	Common Problems
	Sequence objects
	Example sequence generator annotation
	Example sequence generator XML
	Common Problems
	Identity sequencing
	Example identity annotation
	Example identity XML
	Common Problems
	Advanced
	Composite Primary Keys
	Id Class
	Example id class annotation
	Example id class XML
	Example id class
	Embedded Id
	Example embedded id annotation
	Example embedded id XML
	Example embedded id class
	Primary Keys through OneToOne Relationships
	Example OneToOne id annotation
	Example OneToOne id XML
	Example ManyToOne id annotation
	Example ManyToOne id XML
	Advanced Sequencing
	Concurrency and Deadlocks
	Running Out of Numbers
	Guaranteeing Sequential Ids
	Customizing
	Primary Keys through Triggers
	Primary Keys through Events
	No Primary Key
	Inheritance
	Single Table Inheritance
	Example single table inheritance table
	Example single table inheritance annotations
	Example single table inheritance XML
	Common Problems
	No class discriminator column
	Non nullable attributes
	Joined, Multiple Table Inheritance
	Example joined inheritance tables
	Example joined inheritance annotations
	Example joined inheritance XML
	Common Problems
	Poor query performance
	Do not have/want a table for every subclass
	No class discriminator column
	Advanced
	Table Per Class Inheritance
	Example table per class inheritance tables
	Example table per class inheritance annotations
	Example table per class inheritance XML
	Common Problems
	Poor query performance
	Issues with ordering and joins
	Mapped Superclasses
	Example mapped superclass tables
	Example mapped superclass annotations
	Example mapped superclass XML
	Common Problems
	Cannot query, persist, or have relationships
	Subclass does not want to inherit mappings
	Embeddables
	Example of an Embeddable object annotations
	Example of an Embeddable object XML
	Example of an embedded relationship annotations
	Example of an embedded relationship XML
	Advanced
	Sharing
	Example shared embeddable annotations
	Example shared embeddable XML
	Embedded Ids
	Nulls
	Nesting
	Example of using properties to define a nested embeddable
	Inheritance
	Relationships
	Example of setting a relationship in an embeddable from its parent
	Example of setting a relationship in an embeddable to its parent
	Collections
	Querying
	Example of querying an embeddable
	Locking
	Optimistic Locking
	Example of Version annotation
	Common Locking Mistakes, Questions and Problems
	Not sending version to client, only locking on the server
	Example of Version XML
	Handling optimistic lock exceptions
	Paranoid Delusionment
	Other applications accessing same data
	Isn't database transaction isolation all I need?
	What happens if I merge an object that was deleted by another user?
	What if my table doesn't have a version column?
	What about relationships?
	Can I use a timestamp?
	Do I need a version in each table for inheritance or multiple tables?
	Advanced
	Timestamp Locking
	Multiple Versions
	Cascaded Locking
	Field Locking
	Read and Write Locking
	Example of Using the Lock API
	Example of Using the Lock API for Cascaded Locks
	No Locking a.k.a Ostrich Locking
	Pessimistic Locking
	Serializable Transaction Isolation
	Basics
	Example of basic mapping annotations
	Common Problems
	Translating Values
	Example of basic mapping XML
	Truncated Data
	How to map timestamp with timezones?
	How to map XML data-types?
	How to map Struct and Array types?
	How to map custom database types?
	How to excluded fields from INSERT or UPDATE statements, or default values in triggers?
	Advanced
	Temporal, Dates, Times, Timestamps and Calendars
	Example of temporal annotation
	Example of temporal XML
	Milliseconds
	Timezones
	Enums
	Example of enumerated annotation
	Example of enumerated XML
	LOBs, BLOBs, CLOBs and Serialization
	Example of lob annotation
	Example of lob XML
	Lazy Fetching
	Optional
	Column Definition and Schema Generation
	Example of column annotations
	Example of column XML
	Insertable, Updatable / Read Only Fields / Returning
	Conversion
	Custom Types
	Relationships
	JPA Relationship Types
	Lazy Fetching
	Example of a lazy one to one relationship annotations
	Example of a lazy one to one relationship XML
	Magic
	Basics
	Serialization, and Detaching
	Eager Join Fetching
	Cascading
	Example of a cascaded one to one relationship annotations
	Example of a cascaded one to one relationship XML
	Target Entity
	Example of a target entity relationship annotations
	Example of a target entity relationship XML
	Collections
	Collection Implementations
	Duplicates
	Ordering
	Example of a collection order by annotation
	Example of a collection order by XML
	Order Column (JPA 2.0)
	Example of a collection order column annotation
	Example of a collection order column XML
	Common Problems
	Object corruption, one side of the relationship is not updated after updating the other side
	Poor performance, excessive queries
	Lazy is not working
	Broken relationships after serialization
	Dependent object removed from OneToMany collection is not deleted
	My relationship target is an interface
	Advanced
	Advanced Relationships
	JPA 2.0 Relationship Enhancements
	Other Types of Relationships
	Maps
	Example of a map key relationship annotation
	Map Key Columns (JPA 2.0)
	Example of a map key column relationship annotation
	Example of a map key relationship XML
	Example of a map key column relationship XML
	Example of a map key join column relationship annotation
	Example of a map key join column relationship XML
	Example of a map key class embedded relationship annotation
	Example of a map key class embedded relationship XML
	Join Fetching
	Example of JPQL Join Fetch
	Outer Joins
	Example of JPQL Outer Join Fetch
	Mapping Level Join Fetch and EAGER
	Nested Joins
	Example of Multiple JPQL Join Fetch
	Duplicate Data and Huge Joins
	Batch Reading
	Filtering, Complex Joins
	OneToOne
	Example of a OneToOne relationship annotations
	Inverse Relationships, Target Foreign Keys and Mapped By
	Example of an inverse OneToOne relationship annotations
	Example of a OneToOne relationship XML
	Example of an inverse OneToOne relationship XML
	See Also
	Common Problems
	Advanced
	Target Foreign Keys, Primary Key Join Columns, Cascade Primary Keys
	Example of cascaded primary keys and mixed OneToOne and ManyToOne mapping annotations
	Example of cascaded primary keys and mixed OneToOne and ManyToOne mapping annotations using PrimaryKeyJoinColumn
	Mapping a OneToOne Using a Join Table
	Example of a OneToOne using a JoinTable
	Example of simulating a OneToOne using a OneToMany JoinTable
	ManyToOne
	Example of a ManyToOne relationship annotations
	See Also
	Example of a ManyToOne relationship XML
	Common Problems
	Advanced
	Target Foreign Keys, Primary Key Join Columns, Cascade Primary Keys
	OneToMany
	Example of a OneToMany relationship annotations
	Join Table
	Example of a OneToMany using a JoinTable annotation
	Example of a OneToMany relationship XML
	Getters and Setters
	Example of a OneToMany using a JoinTable XML
	See Also
	Common Problems
	Advanced
	Undirectional OneToMany, No Inverse ManyToOne, No Join Table (JPA 2.0)
	Example of a JPA 2.0 unidirectional OneToMany relationship annotations
	ManyToMany
	Example of a ManyToMany relationship annotations
	Bi-directional Many to Many
	Example of a ManyToMany relationship XML
	See Also
	Common Problems
	Advanced
	Mapping a Join Table with Additional Columns
	Example join table association object annotations
	Runtime
	Entity Manager
	Java Standard Edition
	Example persistence.xml file
	Example of accessing an EntityManager from an EntityManagerFactory
	Java Enterprise Edition
	Example SessionBean ejb-jar.xml file with persistence context
	Example of looking up an EntityManager in JNDI from a SessionBean
	Example of looking up an EntityManagerFactory in JNDI from a SessionBean
	Example of injecting an EntityManager and EntityManagerFactory in a SessionBean
	Querying
	Named Queries
	Example named query annotation
	Example named query XML
	Example named query execution
	Dynamic Queries
	Example dynamic query execution
	Common Queries
	Inverse ManyToMany, all employees for a given project
	How to simulate casting to a subclass
	Advanced
	Flush Mode
	Native SQL Queries
	Example native named query annotation
	Result Set Mapping
	Example native named query XML
	Example native named query execution
	Example dynamic native query execution
	Stored Procedures
	JPQL BNF
	Select
	From
	Select Clause
	Where
	Functions
	Group By
	Order By
	Subquery
	Update
	Delete
	Persisting
	Persist
	Example persist
	Cascading Persist
	Merge
	Example merge
	Cascading Merge
	Transient Variables
	Remove
	Example merge
	Cascading Remove
	Reincarnation
	Advanced
	Get Reference
	Clear
	Get Delegate
	Caching
	Data Cache
	Object Identity
	Stale Data
	Refreshing
	Caching in a Cluster
	Databases
	MySQL
	Installing
	Configuration tips
	Creating the database automatically
	References

	License

