University College of Southeast Norway

Introduction to Visual
Studio and C#

HANS-PETTER HALVORSEN, 2016.09.26

File Edit View Project Buid Debug Team Data Tools Architecture Test Analyze Measurement Studio Window Help
iR U AT Y I R R = R = A ~| [any cPu - | GG Bl - .
e & 3| T o b |0 B e & | & 58 er A=

q 1 Form1.cs [Design] X Solution Explorer

(# All Windows Forms. ~

= Common Contrals =
Fointer My.DA0 App,

y
Button = [Properties
<] assemblyInfo.cs

CheckBox
checkedLists fanaiogO0l B ficenses.lix
eckedListBox : @ (4 Resources.resx
ComboBox 3 @[] Settings.settings
DateTimePicker Jareiog I g % :efsrlences
=) Forml.cs

Label [][cetpaa &) Program.cs

LinkLabel

=
B
A
A
E3

ListBox

ListView

MaskedTextBox
MonthCalendar
Notifylcon

NumericUpDown = 23] Solution Explorer

PictureBox
ProgressBar

MyFirstDAQApp Solution Properties -

RichTextBox v

TextBox (Name) MyFirstDAQApp

Active config Debug| Any CPU

ToolTi -
P Description
Path M:\Work', Tutorials',CSharp'\D)|

Startup project MyFirstDAQApp

RadioButton

FEWORDREELER

Treeview
[webBrowser

& Containers

& Menus & Toobars

Data

& Companents

 Printing

(£ Dialogs @ oErors | 1\ 0warnings | (i) 0 Messages

I WPF Interoperabilty

Reporting

#visual Basic PowerPacks

[Measurement Studio

[cenerl vl & eror it |2

Line Column Project

Description File

(Name)
The name of the solution file.

http://home.hit.no/~hansha

Table of Contents

Lo INEFOAUCTION Lot e e e 5
1.1, ViSUGI STUGIO ceeeiiiieeee et 5
0 - PP P R PR PR 6
130 INET FrameWOrK c...cooeieiieeiie et 6
1.4. Object-Oriented Programming (OOP)ueeeeeieiiieeeeeiieiiecccccirrrrereeee e e e e e e e e e e e e eeeeaanns 7

2. VISUAL STUAIO .. e e 8
P20 B 14 o oo 18 ot o o PP P PRSPPI 8
D B C =1 u 11 o= - [o o <To I PP 8

2.2.1. Integrated Development Environment (IDE).......cceeveeeieiiiiiieciiciiiirreeeeeeeeeeeeeeeee, 8
D A [YA o] o =T S 9
D T Yo [V o T o I =54 o] Lo 1 o U 10
22,4, TOOIDOX..eiieiiiiiietiieee e 11
2.2.5. EditOrs and DESIGNEIS.....uuuueeeeeiieeieeeeeeieiieccccccitrrrrreeeeeeeeeeeeeeeeeeseessennsasaraereeeeeens 12
2.2.6. Properties WINGOWccccvveeeeeiieeieeeeeeieiieiiiciniirrreeeeeeeeeeeeeeseeeesessssnnnssssseseseseees 12
D B - 111 o I TaTo H D I<] o 0T = Ko Yo F-J U 13

3. WiINAOWS PrOgrammMiNg....cceeeeeeeiieiiieiieccciiiiierreeeeeeeeeeeeeeeeseesaasssssaeeeeeeeeeaeseeessessssssnssnnes 15

S 70 B 1) o oo 18 ot o o PP PO PP OPRTOPRPRPR 15
3.1.1. WiINAOWS FOMMS ..ottt 15
3120 WPF e e e 16
3.2, HElO WOKIO .t 16
4, Getting Started With CH........enuiieeeeeee e e e e e e e e e e e e e e 19

Table of Contents

4.1, INErOTUCTION .ttt st e e st e e s bt e e s sabb e e e sbbeeesnneeenans 19
4.2. Data Types and Variables. ...ttt 19
4.2.1. BOOIEAN LYPE coeiiiiiiee ettt e e e e e e e e e e rraeeeeeaanaes 20
4.2.2. Numeric types: Integrals, Floating Point, Decimalccccoovviiieeiiiniiiiieee s 20
N T { €1 7= 01V o 1= IO O PP PPPPPPPPPPPRTPPIR 20
A A\ o - 1Y £SO PP P PPPPPPPPPPRTPRIR 21
4.3, CONTIOI FIOW ..eiiiiiiiieeieee ettt ettt s e s sttt e e st e e e snneeenans 21
431, The if STatemMENT..cci i 21
4.3.2. The sWitch StatemMeNt.....c..eiiiiiiiieeeee e 22
S o Yo o LT OO OO UPPPPPPPPPPTRTPPRt 23
4.4.1. The Whil€ LOOP ueeiiiiiiiiieiie ettt et e e e s ae e e e e e e earae e e e e ennns 23
N N o 1= Lo TN o To o PRSPPI 23
. TR I o T8 o T gl e Yo Yo TP PR SPPURPN 24
4.4.4. The fOreach LOOP ...t iiiiiiee ettt e e e et e e e e s e earae e e e e ennes 24
TR 1Y/ =1 1 0 To Lo [PP PO OPPPPTOPPPPOPPPRN 24
4.5.1. NONSTAtiC METhOASiiiiiiiiieieee e 25
4.5.2. Static METNOASoiieeiiiiiiieee e e 25
o N - T0 g [T o 1= Lol LSOO PP PPPPPPPPPPTRTPPRt 26
B.7. ClaSSES ..ueeeeeiuiiee ettt ettt ettt ettt e et e ettt e et e e st e s e et e e e b be e e s bt e e e e bae e e sareeeenreeeaan 26
L O o] 1 o U ot o] OO UPUPP OO 27
T o o] o 1= o =T OO PO TP PPPPPPPPTRTPPRt 29
4.9, NAMING CONVENTION ..uuiiiiiiiiiiieiieieeeetret e e e e e e e et ettt e asese s e s s e s e eeeeeeseananes 31
More Object-oriented TEChNIQUESciviiieiiiiiee e e e 33
70 N [0 o =T 01 =T ol TP PRSP PUPTROPPPTRPPP 33
T A o 1Y oYY o] V1Y o' [PPSR 34
T TR =1 (o= o K U] - | o F PP 35

Tutorial: Introduction to Visual Studio and C#

Table of Contents

| ol=Y oY Yo I o =T o Vo 1T = USSR 36
Windows FOIrmMS EXaMPIE ...eeiiiiiiiiiiee ettt e e e s e e e e sara e e e e e nnans 38
V] o ad e T=d = Ta 0] s o 11 o= USSP 44
8.1, INTrOQUCTION ..ottt et et e st e s saba e e s e beeeeeanes 44
8.2, HTIMLuueiiiiiiieeeee ettt sb e sttt sttt n e s e e neene e 44
8.3, WD BrOWSET ..ottt ettt s 44
B, £ ettt h et et sa et san e et e s re e neereens 45
T TR - 1 V7= N ol o | o) 45
8.6, ASPUNET L.ttt b e st s sar e b et neeneens 45
8.7 AJAX/ ASPINET AJAX ..ottt sttt sttt ettt sb et sb e sttt st sbe e e et ebee e 46
o TR |1V =T o [F-={ o} PO 46
Database PrOgrammMiNg......uueeeeeeieeieeeeeeeeeieeccccciirrrereeeeeeeeeeeeeeeesse s anssrssrereeaeeeeeaeeeeesenns 47
9.1, ADOLNET ettt ettt et e b e bbbt st ae et e b e re e neereen 47

Tutorial: Introduction to Visual Studio and C#

1. Introduction

In this Tutorial we will use Visual Studio and C#. C# is the programming language, while
Visual Studio is the development environment.

Useful links:

Visual Studio: http://msdn.microsoft.com/en-us/library/dd831853.aspx

C#: http://msdn.microsoft.com/en-us/library/kx37x362.aspx

1.1. Visual Studio

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. It
can be used to develop console and graphical user interface applications along with
Windows Forms applications, web sites, web applications, and web services in both native
code together with managed code for all platforms supported by Microsoft Windows,
Windows Phone, Windows CE, .NET Framework, .NET Compact Framework and Microsoft
Silverlight.

Below we see the integrated development environment (IDE) in Visual Studio:

EBX

WindowsFormsApplication4 - Microsoft Visual Studio

File Edt View Project Buld Debug Team Data Format Tools Architecture Test Analyze Measurement Studio Window Help
e AR I e = Y N I @] JFRE BB -
Pl 2 | T o [SRS S et | HE G E]R,
MR Form!.cs [Design]* X ~ xplorer v x
b e mdnvcvs Flnr;ns ~) S AEIEE S
n ornimen Conires ® Form1 @@@ g Solution ‘WindowsFormsapplcationd’ (1 project)
H R pointer = () wWindowsFormsApplicationd
L Button @ [Properties
CheckBox - 3] References
& labell = [Formi.cs
B chededtiox — 9 Form1.Designer.cs
=8 conbosor R Fom resx
TH DateTimePicker] Program.cs
A Label
A LinkLabel
B3 ListBox
33% Listview
[e-] MaskedTextBox
FE MonthCalendar
=] Notifylcon
E8 MumericupDown 5 solution Explorer [RIS
& PictureBox
@D ProgressBar
1 System.Windows.Forms.Form
® RadioButton .
cs =
25 RichTextBox =B =)
[l TextBox B Minimumsize 00 -~
% ToolT: Opacity 100%
R Toollp B Padding 00;0,0
i Treeiew RightToLeft o
[F webBrowser RightToleftLayout False
(5l Containers Showlcon True
Menus & Toolbars ShowInTaskbar True
#Data size 300; 300
Components SizeGripstyle Auto
& Printing Error List ~ 1 x SR WindowsDefaultLocation
EEES @ oErors | i\ 0 Warnings | (i) 0 Messages Tea
(5 WPF Interoperabilty - . Text Form1
®Reporting Description File Line Column | Project Tophast False v
(5 Visual Basic PowerPacks Text
EMeasurement Studio The text associated with the control,
v ll 2 Eror List Lo

6 Introduction

New projects are created from the “New Project” window:

New Project

Recent Templates [,NET Eramework 4 + | Sort by: | Default Vo ‘
Installed Templates
r i . i Type: Visual C#
= visual C# Ect‘ ‘Windows Forms Application Visual C#
B " = A project For creating an application with a
o Windows Forms user interface
web |« WPF Application Visual C#
Office

Cloud E'G”I Console Application Visual C#

Measurement Studio —

Reporting é‘ C” Class Library Visual C#

SharePoint P
. . cl

Silverlight ’ cfl| WP Browser Application visual C#

Test

WCF cf| Empty Project Visual C#

Workflow
Other Languages E Windows Service Visual C#
[# Other Project Types 1
]
o Databfase . QC” WPF Custom Control Library Visual C#

Modeling Projects —
[# Test Projects C#‘
‘17‘ WPF User Control Library Visual C#
Online Templates
;c” ‘Windows Forms Control Library Visual C#
MName: | WindowsFormsApplication4]
Location: c:itempivisual studio 2010\Projects v ‘ Browse. ..
Solution name: WindowsFormsapplicationd ‘ [V]Create directory For solution
[]add to source control

1.2. C#

C# is pronounced “see sharp”. C# is an object-oriented programming language and part of
the .NET family from Microsoft. C# is very similar to C++ and Java. C# is developed by
Microsoft and works only on the Windows platform.

1.3. .NET Framework

The .NET Framework (pronounced “dot net”) is a software framework that runs primarily on
Microsoft Windows. It includes a large library and supports several programming languages
which allow language interoperability (each language can use code written in other
languages). The .NET library is available to all the programming languages that .NET
supports. Programs written for the .NET Framework execute in a software environment,
known as the Common Language Runtime (CLR), an application virtual machine that
provides important services such as security, memory management, and exception handling.
The class library and the CLR together constitute the .NET Framework.

Tutorial: Introduction to Visual Studio and C#

7 Introduction

1.4. Object-Oriented Programming (OOP)

Object-oriented programming (OOP) is a programming language model organized around
"objects" rather than "actions" and data rather than logic. Historically, a program has been
viewed as a logical procedure that takes input data, processes it, and produces output data.

The first step in OOP is to identify all the objects you want to manipulate and how they
relate to each other, an exercise often known as data modeling. Once you've identified an
object, you generalize it as a class of objects and define the kind of data it contains and any
logic sequences that can manipulate it. Each distinct logic sequence is known as a method. A
real instance of a class is called an “object” or an “instance of a class”. The object or class
instance is what you run in the computer. Its methods provide computer instructions and
the class object characteristics provide relevant data. You communicate with objects - and
they communicate with each other.

Important features with OOP are:

e C(lasses and Objects
e Inheritance

e Polymorphism

e Encapsulation

Simula was the first object-oriented programming language. Simula was developed in the
1960s by Kristen Nygaard from Norway.

Java, Python, C++, Visual Basic .NET and C# are popular OOP languages today.

Since Simula-type objects are reimplemented in C++, Java and C# the influence of Simula is
often understated. The creator of C++ (1979), Bjarne Stroustrup (from Denmark), has
acknowledged that Simula was the greatest influence on him to develop C++.

Tutorial: Introduction to Visual Studio and C#

2. Visual Studio

2.1. Introduction

Home page of Visual Studio: http://www.microsoft.com/visualstudio

There exist different versions of Visual Studio, such as Visual Studio Express (free), Visual
Studio Professional, Visual Studio Premium and Visual Studio Ultimate.

2.2. Getting Started

2.2.1. Integrated Development Environment (IDE)

The Visual Studio product family shares a single integrated development environment (IDE)
that is composed of several elements: the Menu bar, Standard toolbar, various tool windows
docked or auto-hidden on the left, bottom, and right sides, as well as the editor space. The
tool windows, menus, and toolbars available depend on the type of project or file you are
working in.

Below we see the Visual Studio IDE (Integrated Development Environment):

Start Page - Microsoft Visual Studio

File Edt View Debug Team Data Tools Architecture Test Analyze Measurement Studo Window Help

H-SH@ %2R -85k | || R G5 a0 Bl e -
0
= General
There are no usable controls in this m Lyl . .
aroup. brag an e onko ti ext to Visual Studio 2010 Ultimate
add it to the toolbox.

pic Get Started = Guidance and Resources Latest News
L Connect To Team Foundation Server
Welcome Windows Web Cloud Office SharePoint Data

[} Mew Project...
5] openproject... s = = What's New in Visual Studio 2010
Learn about the
release.
Recent Projects Wisual Studio 2010 Overview
—]
@ MyFirstDAQARP what's
- Custorize the Visual Studio Start Page
33 Control Application

SimpleGraph,2010
TemperatureSystem.2010 Creating Applications with Visual Studio
3 DAQeontrolipp 2

@ SCADAapp

(e Extending Visual Studio

Community and Learning Resources

[“close page after project load

[“show page on startup
53 Solytion Explorer

9 Visual Studio

2.2.2. New Project

The first thing you do when you want to create a new application is to create a new project.

This can be done from the Start Page:

Microsoft* -
O Visual Studio 2010 Utimate

A Get Started ~ Guidance
Q Connect To Team Foundation Server
Welcome Windows W

-

E] Open Project...

Rerent Proiects

Or from the File menu:

Start Page - Microsoft Visual Studio

m[Edit View Debug Team Data Tools Architecture _Ie nalyze Measurement Studio Window Help
New » (3] Project... Ctrléshiftsn |
Open (EF) Shift-+Alt+N
Close Lgy Team Project...
7] Close Solution (] File... Chrl+n
A Save Selected Items Ctrl+S Project From Existing Code...
e mleie i dlee el I

Then the “New Project” window appears:

Tutorial: Introduction to Visual Studio and C#

10 Visual Studio

New Project @

2|

Recent Templates l MET Framework 4 v | Sort by: |Default

Installed Templates
Type: Visual C#

T E‘cﬁ ‘Windows Forms Application Visual C#
= visual F* ’: A project for creating an application with a
Windows ~c ‘Windows Forms user interface
web @ | WPF Application Visual C#
Office
Cloud B Console Application Visual C#
Measurement Studio —
Reporting vcﬁ Class Library Visual C#
SharePoint
" " 90
Silverlight cfl| WPF Browser Application Visual C#
Test
WCF cft| Empty Project Visual C#
Workflow
‘? Other Languages —ch| windows Service Visual C#
[# Other Project Types b
]
3a?lfsep et ch WPF Custom Control Library Visual C#
lodeling Projects —]
[# Test Projects ch
@~ wPF User Control Library Visual C#
Online Templates
‘?icﬁ ‘Windows Forms Control Library Visual C#
MName: l WindowsFormsapplication1 I

Location: l c:\visual Studio 2010\Projects v [

[[V]create directory for solution
["Jadd to source control

Solution name: [windowsFormsApplication1

In this window you will select an appropriate template based on what kind of application you
want to create, and a name and location for your project and solution.

The most common applications are:

e Windows Form Application
e Console Application

e WPF Application

e ASP.NET Web Application
e Silverlight Application

2.2.3. Solution Explorer

Solutions and projects contain items that represent the references, data connections,
folders, and files that you need to create your application. A solution container can contain
multiple projects and a project container typically contains multiple items.

Tutorial: Introduction to Visual Studio and C#

11 Visual Studio

Solution Explorer v ax

2 Solution ‘MyMovieCollection'(1 project)
= ‘_E MyMovieCollection

4l My Project

L Controls

- Documentation

[# 4 Resources
| | bvDCollectionDatabase. mdf
é] DVDCollectionDataSet.xsd
4 ListDetailsvb
ESvainFormvb |

4 searchonlinevb

2.2.4, Toolbox

The Toolbox contains all the necessary controls, etc. you need to create your user interface.
See Figure below.

Toolbox ~ & x| The Toolbox contains all the controls, etc. we can use
= Common Controls ~y . :
N Point in our user interface.
ointer
Button In order to use them in our user interface, we just dra
]
CheckBox
-) and drop them to the “Form”, as shown below:
CheckedListBox
®§ Combobox e
& All Windows Forms ~)
'@ DateTimePicker B C:MMTD;‘::MS % Form1 mES
A Label Button
s CheckBox
A LinkLabel CheckedListBox fabelt I
2 omboBox »
=3 ListBox B combon I
T DateTimePicker
237 ListWiew A b = |
— A Linkabel I8
MaskedTextBox B Lstrox _1/ >
] MonthCalendar @ B
== MotifyIcon FE MonthCalender F
=] Notifylcon
13 mumericUpDown = NumeyrlcUpDuwn
[PictureBox g E::::::a'
@) ProgressBar © Rodoputton
23 RichTextBo;
& RadioButton TextBox
'ﬂ_—i RichTextBox B Tl
TextBox
- ToolTip
S TreeView
E WebBrowser
Containers
Menus & Toolbars |
Data
Components
Printing
Dialogs
WPF Interoperability
Reporting
Visual Basic PowerPacks
= Measurement Studio

Tutorial: Introduction to Visual Studio and C#

12 Visual Studio

2.2.5. Editors and Designers

Visual Studio has different editors and design tools.

Graphical User Interface Designer:

Forml.cs [Design]* X

labell

31 L=

listBox1 9. juni 201 v

Code Editor:

“t4 windowsFormsapplication1.Form1 'I & buttoni_Click{object sender, Eventargs e)
T >
using System.Collections.Generic;
using System.CompenentModel;
using System.Data;
using System.Drawing;
using System.Ling;
using System.Text;
using System.Windows.Forms;

| > 4]

[FInamespace WindowsFormsApplicationl

{

=] public partial class Forml : Form

{

=] public Forml()

{
¥

InitializeComponent();

E private void buttonl_Click(object sender, EventArgs e)

{
¥

textBoxl.Text = "Hello World";

(<€

100% ~ &

[»

2.2.6. Properties window

Each control we have on our user interface has lots of Properties we can set.

Tutorial: Introduction to Visual Studio and C#

13

Visual Studio

This is done in the Properties window:

Properties v 01X

textBox1 System.Windows.Forms, TextBox

i El S =

MinimumSize 0;0
Modifiers Private
Multiline False
PasswordChar
ReadOnly False
RightToLeft Mo
ScrollBars MNone
ShortcutsEnabled True

Size 383; 20
TabIndex 0
TabStop True
Tag
Text

2.2.7. Build and Debug Tools

In Visual Studio we have lots of Build and Debugging Tools.
Build menu:

Below we see the Build menu:

1 Build | Debug Team Data Tools Architecture Test

l Build Solution

‘ Rebuild Solution

| Clean Solution

| |ﬁ] Build WindowsFormsApplication1
Rebuild WindowsFormsapplication1

| Clean WindowsFormsapplication1

| @l Publish WindowsFormsapplication1

Run Code Analysis on WindowsFormsApplication1

Batch Build...

Configuration Manager...

Analyze Me
F&

Shift+Fé

The most used tool is “Build Solution” (Shortcut Key: F6).

Debug menu:

Below we see the Debug menu:

v

|

€

Tutorial: Introduction to Visual Studio and C#

14 Visual Studio

‘Debug | Team Data Tools Architecture Test Anal
Windows »
P Start Debugaing FS
> Start Without Debugaing Ctrl+FS
pA Start Performance Analysis alt+F2
L—‘; Attach ko Process...
Exceptions... Ctrl+D, E
5= StepInto F11
(Z step Over F10
Toggle Breakpoint F9
Mew Breakpoint »
+J Delete All Breakpoints Ctrl+Shift+F9
IntelliTrace »
Clear all DataTips
Export DataTips ...
Import DataTips ...
Options and Settings...

The most used tool is “Start Debugging” (Shortcut Key: F5).

Tutorial: Introduction to Visual Studio and C#

3. Windows Programming

3.1. Introduction

When creating ordinary Windows applications, we can select between the following:

e Windows Forms Application
e WPF Applications (Windows Presentation Foundation)

Windows Forms is the standard way of creating Windows applications and has existed in
many years, even before .NET 1.0 (2002) was introduced. WPF is a new approach from
creating Windows applications and was introduced with .NET Framework 3.0 (2006).

For example has the Visual Studio IDE been entirely rewritten using WPF.

Windows Forms Application and WPF Applications will be explained in more detail below.

3.1.1. Windows Forms

Windows Forms is the standard way of creating Windows applications.

Select “Windows Forms Application” in the “New Project” window:

New Project

Recent Templates

v|Sortby: Defat | 2|

[\NET Framework 4

Installed Templates
X Type: Visual C#
= visual C# Ect‘ Windows Forms Application Wisual C#
-) =i A project for creating an application with a
Windows: G Windows Forms user interface
Web .| WPF Application visual C#
Office
Cloud !cﬁ Console Application Visual C#
Measurement Studio —
Reporting élﬁ cﬁ Class Library Visual C#
SharePaint
Silverlight WPF Browser Application Visual C#
Test
WCF ch| Empty Project Visual C#
Workflow
& Other Languages _chl| windows service visual Ci#
Other Project Types i
.
Database @ wer custom Control Library Visual C#
Modeling Projects A
Test Projects ol ;
&~ WPF User Control Library Visual C#
Online Templates
?ad‘ Windows Forms Control Library Visual C#
Name: [‘WindowsFormsApplication1
Location: | c:\wisual Studio 2010Projects v Browse...
Solution name: ‘ ‘windowsFormsApplication1 [“]Create directory For solution
[Jadd to source control

15

16 Windows Programming

3.1.2. WPF

Developed by Microsoft, the Windows Presentation Foundation (or WPF) is a computer-
software graphical subsystem for rendering user interfaces in Windows-based applications.

WPF is intended to take over for the traditional Windows Forms.

The graphical user interface in WPF is designed using XAML (Extensible Application Markup
Language).

XAML:

Following the success of markup languages for web development, WPF introduces a new
language known as eXtensible Application Markup Language (XAML), which is based on XML.
XAML is designed as a more efficient method of developing application user interfaces

Select “WPF Application” in the “New Project” window:

New Project

Recsiiepvlates | NET Framework 4 + | sort by: | Default 2|
Installed Templates
M-) o . Type: Visual C#
= visual C# Ecn ‘Windows Forms Application Visual C#
- | b Windows Presentation Foundation client
Windows ot application
Wweb 23 WPF Application Yisual C#
Office 3
Cloud Gﬂ Console Application Yisual C#
Measurement Studio —
Reporting 5 Cn Class Library Visual C#
SharePoint
I o
Silverlight ’ ot WPF Browser Application Visual C#
Test
WCF cﬂ Empty Project Yisual C#
Workflow
@ Other Languages @ Windows Service Visual C#
Other Project Types A
®
* Datab‘ase . ¢C“ WPF Custom Control Library WYisual C#
Modeling Projects —]
Test Projects C“
\'7\ WPF User Control Library Yisual C#
Online Templates
:-ﬂC” Windows Forms Control Library Visual C#
Name: Wpfapplication1 ‘
Location: c:\Visual Studio 2010\Projects v ‘
Solution name: ‘Wpfapplicationl ‘ [V]Create directory for solution
[]add to source control

3.2. Hello World

We start by creating a traditional “Hello World” application using Windows Forms. The
application is shown below:

Tutorial: Introduction to Visual Studio and C#

17

Windows Programming

rm1

EEX

Hello World

The Visual Studio IDE looks like this:

PEIE =

Tookox

= Common Controls
Pointer

seaun0s e gl

Button
Checkgox

CheckedListBox

ComboBox

DateTimePicker
Label

LinkLabel
ListBox.

2
A
A

Listview
MaskedTextBox
MonthCalendar

i)
=

Notifylcon

NumericUpDown
PictureBox

ProgressBar

©FRE

RadioButton

] 4

RichTextBox

TextBox

i

ToolTip
TreeView

[webBrowser
Containers
(# Menus & Toolbars
#Data
{# Components.
[Printing
I Dialogs
WPF Interoperabiity
@ Reporting
[# Visual Basic PowerPacks
(= Measurement Studio

Controls in this category are v

Ready

File Edt View Project Buld Debug Team Data Tools Architecture Test Analyze

S S B 4 B9 - - S5 b [o

& All Windows Forms -~

WindowsFormsApplication1 - Microsoft Visual Studio

Measurement Studio Window Help

-| |86

12 oo

A | T o |G B e e B[8 & B e |EHE| GRS,

B reor Lt

@ 0rrors | 1\ 0warnings | (D) 0 Messages
Description Fie Line

Column

Project

-|| A G BB -

v 3 x

EEX

- Bx
SEEEa
< Solution ‘WindowsFormsApplicationt’ (1 project)
= () WindowsFormsapplication1
@ =4 Properties
- (i References
= (E] Forml.cs
%) Form1.Designer.cs
%] Formi.resx
) Program.cs

30 Solution Explorer

Properties v B X
textBox1 System.Windows,Forms, TextBox E

‘HE =
@ (ApplicationSettings) o/
B (Databindings)

(Name) textBox1

AcceptsReturm False d

AcceptsTab False

AccessibleDescription

AccessibleName

AccessbleRole Default

AlowDrop False

Anchor Top, Left

AutoCompleteCustomSource (Collection)

AutaCompleteMode None

AutoCompleteSource None v
Text

The text associated with the control.

In this project we use a simple TextBox (textBox1) and when we start the program the text
“Hello World” is written to the TextBox.

The code is as follows:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

namespace WindowsFormsApplicationl

{

public partial class Forml :

{
public Forml ()

{

Form

InitializeComponent () ;

Tutorial: Introduction to Visual Studio and C#

18

Windows Programming

private void Forml Load(object sender, EventArgs e)

{

textBoxl.Text = "Hello World";

Tutorial: Introduction to Visual Studio and C#

4. Getting Started with C#

C# is a modern Object-oriented programming language.

Object-oriented programming (OOP) is a programming paradigm using "objects" — data
structures consisting of data fields and methods together with their interactions — to design
applications and computer programs. Programming techniques may include features such as
data abstraction, encapsulation, messaging, modularity, polymorphism, and inheritance.

4.1. Introduction

In this chapter we will start with the basic all programming languages have:...

e Data Types and Variables
e Control Flow: If-Else, etc.
e Loops: While Loops, For Loops, etc.

Further we will introduce the following:

e Namespaces

e (Classes
e Data Fields
e Methods

e Properties

In the next chapter we will go more in depth of what Object-oriented programming is and
introduce the following important OOP topics:

e Inheritance
e Polymorphism
e Encapsulation

Note! C# is case-sensitive.

4.2. Data Types and Variables

19

20 Getting Started with C#

“Variables” are simply storage locations for data. You can place data into them and retrieve
their contents as part of a C# expression. The interpretation of the data in a variable is
controlled through “Types”.

The C# simple types consist of:

e Boolean type
e Numeric types: Integrals, Floating Point, Decimal
e String type

4.2.1. Boolean type

Boolean types are declared using the keyword “bool”. They have two values: “true” or
“false”. In other languages, such as C and C++, boolean conditions can be satisfied where 0
means false and anything else means true. However, in C# the only values that satisfy a
boolean condition is true and false, which are official keywords.

Example:
bool content = true;
bool noContent = false;

4.2.2. Numeric types: Integrals, Floating Point,
Decimal

Example:

int i=35;
long y=654654;

float x;
double y;
decimal z;

4.2.3. String type

Example:

string myString="Hei pa deg”;

Special characters that may be used in strings:

Tutorial: Introduction to Visual Studio and C#

21 Getting Started with C#

Escape Sequence Meaning
\! Single Quote

\' Double Quote

\\ Backslash

\O Null, not the same as the C= null value
\a Bell

\b Backspace

\f form Feed

\n Newline

\r Carriage Return

\t Horizontal Tab

\v Vertical Tab

4.2.4. Arrays

Example:

int[] myInts = { 5, 10, 15 };

4.3. Control Flow

To be able to control the flow in your program is important in every programming language.
The two most important techniques are:

e The if Statement
e The switch Statement

4.3.1. The if Statement

The if statement is probably the most used mechanism to control the flow in your
application.

An if statement allows you to take different paths of logic, depending on a given condition.
When the condition evaluates to a boolean true, a block of code for that true condition will
execute. You have the option of a single if statement, multiple else if statements, and an
optional else statement.

Example:

bool myTest;

Tutorial: Introduction to Visual Studio and C#

22 Getting Started with C#

myTest=false;

if (myTest==false)
MessageBox.Show ("Hello") ;

If we have more than one line of code that that shall be executed, we need to use braces,
e.g.

bool myTest;
myTest=false;

if (myTest == false)

{
MessageBox.Show ("Hellol") ;
MessageBox.Show ("Hello2") ;

For more complex logic we use the if ... else statement.

Example:

bool myTest;

myTest=true;

if (myTest == false)
{
MessageBox.Show ("Hellol") ;

MessageBox.Show ("Hello2") ;

Or you can use nested if... else if sentences.

Example:

int myTest;
myTest=2;

if (myTest == 1)

{ MessageBox.Show ("Hellol") ;
;lse if (myTest == 2)

{ MessageBox.Show ("Hello2") ;

MessageBox.Show ("Hello3") ;

4.3.2. The switch Statement

Another form of selection statement is the switch statement, which executes a set of logic
depending on the value of a given parameter. The types of the values a switch statement
operates on can be booleans, enums, integral types, and strings.

Tutorial: Introduction to Visual Studio and C#

23 Getting Started with C#

Example:

switch (myTest)

{
case 1:
MessageBox.Show ("Hellol") ;
break;

case 2:
MessageBox.Show ("Hello2") ;
break;

default:
MessageBox.Show ("Hello3") ;
break;

4.4, Loops

In C# we have different kind of loops:

e The while loop

e The do loop

e The for loop

e The foreach loop

4.4.1. The while Loop

A while loop will check a condition and then continues to execute a block of code as long as
the condition evaluates to a boolean value of true.

Example:

int myInt = 0;

while (myInt < 10)
{

MessageBox.Show ("Inside Loop: " + myInt.ToString());
myInt++;

}

MessageBox.Show ("Outside Loop: " + myInt.ToString());

4.4.2. The do Loop

A do loop is similar to the while loop, except that it checks its condition at the end of the
loop. This means that the do loop is guaranteed to execute at least one time. On the other
hand, a while loop evaluates its boolean expression at the beginning and there is generally
no guarantee that the statements inside the loop will be executed, unless you program the
code to explicitly do so.

Example:

Tutorial: Introduction to Visual Studio and C#

24 Getting Started with C#

int myInt = 0O;

do

{
MessageBox.Show ("Inside Loop: " + myInt.ToString());
myInt++;

} while (myInt < 10);

MessageBox.Show ("Outside Loop: " + myInt.ToString()):;

4.4.3. The for Loop

A for loop works like a while loop, except that the syntax of the for loop includes
initialization and condition modification. for loops are appropriate when you know exactly
how many times you want to perform the statements within the loop.

Example:

for (int i = 0; 1 < 10; i++)

{

MessageBox.Show ("Inside Loop: " + myInt.ToString());
myInt++;

}

MessageBox.Show ("Outside Loop: " + myInt.ToString());

4.4.4. The foreach Loop

A foreach loop is used to iterate through the items in a list. It operates on arrays or
collections.

Example:

string[] names = { "Elvis", "Beatles", "Eagles", "Rolling Stones" };

foreach (string person in names)

{

MessageBox.Show (person) ;

}

4.5, Methods

Methods are extremely useful because they allow you to separate your logic into different
units. You can pass information to methods, have it perform one or more statements, and
retrieve a return value. The capability to pass parameters and return values is optional and
depends on what you want the method to do.

Methods are similar to functions, procedure or subroutine used in other programming
languages. The difference is that a method is always a part of a class.

Example:

public void ShowCarColor (string color)

Tutorial: Introduction to Visual Studio and C#

25 Getting Started with C#

MessageBox.Show ("My Car is: " + color);

We learn more about methods in the Classes section below.
We have 2 kinds of Methods:

e Static Methods
e Nonstatic Methods (Instance Method)

Static Methods belongs to the whole class, while nonstatic Methods belong to each instance
created from the class.

4.5.1. Nonstatic Methods

Example:

We define the class:

class Car

{
//Nonstatic/Instance Method
public void SetColor (string color)

{

MessageBox.Show ("My Car is: " + color);

Then we use it:

Car myCar = new Car(); //We create an Instance of the Class

myCar.SetColor ("blue"); //We call the Method

4.5.2. Static Methods

Example:

We define the class:

class Boat

{
//Static Method
public static void SetColor(string color)

{

MessageBox.Show ("My Boat is: " + color);

Tutorial: Introduction to Visual Studio and C#

26 Getting Started with C#

Then we use it:

Boat.SetColor ("green") ;

i.e., we don’t need to create an object/instantiating the class before we use the Static
Method.

4.6. Namespaces

Namespaces are C# program elements designed to help you organize your programs. They
also provide assistance in avoiding name clashes between two sets of code. Implementing
Namespaces in your own code is a good habit because it is likely to save you from problems
later when you want to reuse some of your code.

You specify the Namespaces you want to use in the top of your code.

Example:

When you create a new Windows Forms application, the following default namespaces will
be included.

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

It is just to add more when you need it.

More about Namespaces later.

4.7. Classes

The first step in OOP is to identify all the objects you want to manipulate and how they
relate to each other, an exercise often known as data modeling. Once you've identified an
object, you generalize it as a class of objects and define the kind of data it contains and any
logic sequences that can manipulate it. Each distinct logic sequence is known as a method. A
real instance of a class is called an “object” or an “instance of a class”. The object or class
instance is what you run in the computer. Its methods provide computer instructions and
the class object characteristics provide relevant data. You communicate with objects - and
they communicate with each other.

Tutorial: Introduction to Visual Studio and C#

27 Getting Started with C#

Everything in C# is based on Classes. Classes are declared by using the keyword class
followed by the class name and a set of class members surrounded by curly braces.

A class normally consists of Methods, Fields and Properties.

Every class has a constructor, which is called automatically any time an instance of a class is
created. The purpose of constructors is to initialize class members when an instance of the
class is created. Constructors do not have return values and always have the same name as
the class.

Example:

We define the following class:

class Car

{
public string color; //Field

//Method
public void ShowCarColor ()
{

MessageBox.Show ("My Car is: " + color);

Then we can use it:

Car myCar = new Car(); //We create an Instance of the Class
myCar.color = "blue"; //We set a value for the color Field

myCar.ShowCarColor () ; //We call the Method

The result is as follows:

My Car is: blue

4.7.1. Constructor

The purpose of constructors is to initialize class members when an instance of the class is
created.

Example:
We can use a Constructor to create a “default” color for our car.

We define the class:

Tutorial: Introduction to Visual Studio and C#

28 Getting Started with C#

class Car

{

public string color; //Field

//Constructor - Used to initialize the Class
public Car()
{

color="green";

}

//Method
public void ShowCarColor ()
{

MessageBox.Show ("My Car is: " + color);

Then we can use it:

Car myCar = new Car(); //We create an Instance of the Class
myCar.ShowCarColor(); //We call the Method
myCar.color = "blue"; //We set a value for the color Field

myCar.ShowCarColor(); //We call the Method

The results are as follows:

My Car is: green

My Car is: blue

Example:

We can also do the following:

class Car

{

public string color; //Field

//Constructor - Used to initialize the Class
public Car(string initColor)
{

color = initColor;

Tutorial: Introduction to Visual Studio and C#

29 Getting Started with C#

//Method
public void ShowCarColor ()
{

MessageBox.Show ("My Car is: " + color);

Then we use it:

Car myCar = new Car("green"); //We create an Instance of the Class

myCar.ShowCarColor(); //We call the Method

New feature: Initialization an object without a Constructor:

In C# 4.0 we can do the following:

We define the Class (without any contructor):

class Car

{

public string color; //Field
public string model; //Field

//Method
public void ShowCarColor ()
{

MessageBox.Show ("My Car Color is: " + color);
MessageBox.Show ("My Car Model is: " + model);

Then we do the following:

Car myCar = new Car {color="white", model="2004"};

myCar.ShowCarColor(); //We call the Method

4.8. Properties

Properties provide the opportunity to protect a field in a class by reading and writing to it
through the property. In other languages, this is often accomplished by programs
implementing specialized getter and setter methods. C# properties enable this type of
protection while also letting you access the property just like it was a field.

Example:

We define a Class with Properties and a Method:

class Car

{

Tutorial: Introduction to Visual Studio and C#

30 Getting Started with C#

public string Name {get; set;}
public string Color {get; set;}

public void ShowCarProperties|()

{

MessageBox.Show ("My Car Name is: " + Name);
MessageBox.Show ("My Car Color is: " + Color);

Then we can use it:

Car myCar = new Car();

myCar .Name="Volvo";
myCar.Color="Blue";

myCar.ShowCarProperties () ;

The results are:

My Car Name is: Yolvo

My Car Color is: Blue

So far, the only class members you've seen are Fields, Properties, Methods, and
Constructors. Here is a complete list of the types of members you can have in your classes:

e Constructors

e Destructors (opposite of Constructors)
e Fields

e Methods

e Properties

e Indexers

e Delegates

e Events

e Nested Classes

Tutorial: Introduction to Visual Studio and C#

31 Getting Started with C#

4.9. Naming Convention

There is different name convention for how to specify your variables, classes and Methods,
etc.

Camel notation:

For variables and parameters/arguments we normally use “Camel notation”.

Examples:

string myCar;
int number;
string backColor;

- In Camel casing the first letter of an identifier is lowercase and the first letter of each
subsequent concatenated word is capitalized.

Pascal notation:

For classes, methods and properties, we normally use “Pascal notation”.

Examples:

class Car

{

void ShowCarColor ()

{

}
}

-> In Pascal casing the first letter in the identifier and the first letter of each subsequent
concatenated word are capitalized.

For Namespaces we use Pascal casing and a dot separator.

Examples:

System.Drawing
System.Collections.Generics

Controls:

For controls on your user interface we either use “Pascal notation” or “Hungarian notation”,
but stick to one of them!

Examples:

“Pascal notation”:

LoginName
LoginPassword

Tutorial: Introduction to Visual Studio and C#

32 Getting Started with C#

“Hungarian notation”:

txtName
txtPassword
1blName
btnCancel

Where “txt” means it is a Text Control, “Ibl” a Label Control, “btn” a Button Control, etc.

Acronyms:

Casing of acronyms depends on the length of the acronym. All acronyms are at least two
characters long. If an acronym is exactly two characters, it is considered a short acronym. An
acronym of three or more characters is a long acronym.

In general, you should not use abbreviations or acronyms. These make your names less
readable. Similarly, it is difficult to know when it is safe to assume that an acronym is widely
recognized.

But if you must, the rules are as follows:

Short acronym Examples (two characters):

DBRate

A property named DBRate is an example of a short acronym (DB) used as the first word of a
Pascal-cased identifier.

ioChannel

A parameter named ioChannel is an example of a short acronym (10) used as the first word
of a camel-cased identifier.

Long acronym Examples (three or more characters):

XmlWriter

A class named XmlWriter is an example of a long acronym used as the first word of a Pascal-
cased identifier.

htmlReader

A parameter named htmlReader is an example of a long acronym used as the first word of a
camel-cased identifier.

Tutorial: Introduction to Visual Studio and C#

5. More Object-oriented
Techniques

In this chapter we will introduce the following Object-oriented techniques:

e Inheritance
e Polymorphism
e Encapsulation

5.1. Inheritance

Inheritance is one of the primary concepts of object-oriented programming. It allows you to
reuse existing code. Through effective employment of reuse, you can save time in your
programming.

Example:

We define the Base class:

class Car

{

public void SetColor (string color)

{

MessageBox.Show ("My Car is: " + color);

}

Then we define a new class that inherits from the Base Class:

class Volvo : Car

{

//In this simple Example this class does nothing!

}

Then we start using the classes:

Car myCar = new Car();
myCar.SetColor ("blue") ;

Volvo myVolvo = new Volvo();

33

34 More Object-oriented Techniques

myVolvo.SetColor ("green");

As you can see we can use the “SetColor()” Method that has been defined in the Base Class.

5.2. Polymorphism

Another primary concept of object-oriented programming is Polymorphism. It allows you to
invoke derived class methods through a base class reference during run-time.

Example:

We start with a Base Class:

class Car

{
public virtual void CarType ()

{

MessageBox.Show ("I am a Car");

}

The virtual modifier indicates to derived classes that they can override this method.

Then we create 3 new Classes that derive from the Base Class:

class Volvo : Car

{

public override void CarType ()
{

MessageBox.Show ("I am a Volvo");

}

class Ford : Car

{

public override void CarType ()
{

MessageBox.Show ("I am a Ford");

}

class Toyota : Car

{

public override void CarType ()
{

MessageBox.Show ("I am a Toyota");

}

These 3 classes inherit the Car class. Each class has a CarType() method and each CarType()
method has an override modifier. The override modifier allows a method to override the
virtual method of its base class at run-time.

Then we can use it:

Car[] car = new Car[4];

car[0] = new Car();

Tutorial: Introduction to Visual Studio and C#

35

More Object-oriented Techniques

car[l] = new Volvol();
car[2] = new Ford();
car[3] = new Toyotal();

foreach (Car carmodel in car)

{

carmodel .CarType () ;

}

The result is:

Iam a Car

Iam a Volvo Iam aFord Iam a Toyota

- This is Polymorphism.

5.3. Encapsulation

Encapsulation means that the internal representation of an object is generally hidden from
view outside of the object's definition. Typically, only the object's own methods can directly

inspect or manipu

We can set differe

Access Modifier
private
protected

internal

protected internal
public

late its fields.

nt Access rights on Classes and Methods:

Description (who can access)
Only members within the same type. (default for type members)
Only derived types or members of the same type.

Only code within the same assembly. Can also be code external to object as long as it is in the same
assembly. (default for types)

Either code from derived type or code in the same assembly. Combination of protected OR internal.
Any code. No inheritance, external type, or external assembly restrictions.

Tutorial: Introduction to Visual Studio and C#

6. Exception Handling

In programming error and exception handling is very important. C# has built-in and ready to
use mechanism to handle this. This mechanism is based on the keywords try, catch, throw
and finally.

Exceptions are unforeseen errors that happen in your programs. Most of the time, you can,
and should, detect and handle program errors in your code. For example, validating user
input, checking for null objects, and verifying the values returned from methods are what
you expect, are all examples of good standard error handling that you should be doing all the
time.

However, there are times when you don't know if an error will occur. For example, you can't
predict when you'll receive a file I/O error, run out of system memory, or encounter a

database error. These things are generally unlikely, but they could still happen and you want
to be able to deal with them when they do occur. This is where exception handling comes in.

When exceptions occur, they are said to be “thrown”. C# uses the keywords try, catch, throw
and finally. It works like this: A method will try to execute a piece of code. If the code detects
a problem, it will throw an error indication, which your code can catch, and no matter what
happens, it finally executes a special code block at the end.

The syntax is as follows:

MyMethod ()
{
try
{
... //Do Something that can cause an Exception
}
catch
{
. //Handle Exceptions
}
finally
{
. //Clean Up
}
}
Example:

public void WriteDagData (double analogDataOut)
{

Task analogOutTask = new Task();

36

37 Exception Handling

Tutorial: Introduction to Visual Studio and C#

7. Windows Forms
Example

In this chapter we will go through a large example. In this example we will create an
application in Visual Studio that controls the following water tank process:

LM-900 LEVEL CONTROL SYSTEM

Lo
cmoin

S——— w‘
" I |

- | =3

: (49

L © '

&——. —~ R
b2 L— . \ ‘
S N\\

- Fout

The purpose is to control the level in the water tank. In order to communicate with the
physical process, we use a NI USB-6008 DAQ device:

We will not show all the details in the code, but focus on the structure.

Below we see the user interface we have created in Visual Studio:

38

39

Windows Forms Example

ontrol Application

Level
Setpoint

Real Process 10—

‘ i

5
Model |
0
Controller
5-
Manual Control
4
3
Pl Control 9 Controller Value
o1
Kp
0.8
Ti
15

=)

Plotting ‘Water Level
6

I
1300

Plotting Control Value

I I
1000 1200

| |
600 800

I
1300

|
1200

Below we see the Visual Studio project:

PRl & 3| T o

W Toobox

ISRl All Windows Forms

Bl = Common Controls

g R Pointer

b Button
CheckBox
8% CheckedListBox
8 ComboBox
T DateTimePicker
A Label
A LinkLabel
=% ListBox

Listview

] MaskedTextBox
MonthCalendar
=] Notifylcon

18 NumericUpDown
& PictureBox

@ ProgressBar

@ RadioButton
B3 RichTextBox

bl TextBox

ToolTip
Tresview

[E] webBrowser
& Containers
& Menus & Toobars
#Data
 Components
Printing
Dialogs
& WPF Interoperabilty
Reporting
% Visual Basic PowerPacks
= Measurement Studio
R Pointer

Ready

FREn Rger Rl = B S RReN -

Control Application - Microsoft Visual Studio

EEX

File Edt View Project Buld Debug Team Data Tools Architecture Test Analyze Measurement Studio Window Help
4 - D=L | b [pebug ~| | any cPu ~| | |pid - A Gy e Bl - s
Al e e R | 2 & & e 5 2
MRl Form1.cs [Design] X Rl Solution Explorer v X
~ =
a2 EE S
B) Solution ‘Control Application’ (1 project)
= (& Control Application
Level # [Properties
Seipaint 20+ 5lom [References
= [Classes
5|cm g &)
15+ 4] Filter.cs
i #] PidController.cs
#] ProcessModel.cs
RealProcess 10|] bricks.ico
] 2 ClassDiagram.cd
J @ 2] Forml.cs
5}
Program.cs
Model i rend.ico
Controller]
Marwal Control 5- 2 solution Explorer [R RAE
4 v 3 x
L o
21 s
e 2
Pl Control] I Eontioboryakiol Buid Action Compile
0 v Copy to Output Direc! Da not copy
Ko Custom Tool
08 Custom Tool Namespe
Ti File Name Dag.cs
15
b
< >
Build Action
3 tinert How the file relates to the build and deployment
processes,
v

We start with defining the classes we need in our application.

In the Solution Explorer we have defined a “Classes” folder where we put all the classes we

Create:

Tutorial: Introduction to Visual Studio and C#

40 Windows Forms Example

Solution Explorer v I X

i | 3 2] 2R
3 Solution 'Control Application' {1 project)
=] .E Control Application
[+ |=d| Properties
[+ |+l References
= [Classes
] Dag.cs
] Filer.cs
] PidController.cs
] ProcessModel.cs
4] bricks.ico
=) ClassDiagram.cd
“E] Formi.cs
)] Program.cs
) trend.ico

=+

In order to create new classes we right-click in the Solution Explorer and select “Add-New
ltem...”:

vq.x

Solution Explorer
EEE
; Solution 'Control Application’ (1 project)
= ~E Control Application

[+ =d| Properties

[+ |«3] References

, SN C|occoc
] New Item... Ctrl+Shift+4 Add
i Existing Item... Shift+alt+4 Exclude From Project
4 Mew Folder & Cut

Windows Form... 53 Copy

Next we select the Class item in the “Add New Item” window:

Tutorial: Introduction to Visual Studio and C#

41

Windows Forms Example

Add New Item - Control Application
Installed Templates

= Visual C# Ttems

Sort by: m G

LY
Q
=,

111

(og

& &0 [) By e

\
<

¥

Windows Form

User Control

Component Class

User Control (WPF)

About Box

ADO.NET Entity Data Model

ADO.NET EntityObject Generator

ADO.MET Self-Tracking Entity Generator

Application Configuration File

e sFinn W anifack Eiln,

Code vgm,\ NI DAQ Component VYisual C# Items
Data -y
General ‘@ NI Instrument Driver Visual C# Items
Web 4
C
Windows Forms (iiﬁl MI Visa Task Visual C# Items
WPF . |
Reporting i C“E Class Visual C# Ttems |
Workflow L H
]
Online Templates Interface Visual C# Items

Visual C# Ttems

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

Visual C# Items

Wicr 1Al C# T

Name: I Class1.cs

Classes:

-~

| €

@3

l

A

Type: Visual C# Items

An empty class definition

We start with the “Daq” Class that contains logic for reading and writing to the DAQ device:

//Include necessary Namespaces
using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using NationalInstruments;

using NationalInstruments.DAQmx;

namespace Tuc.Control //We define a useful namespace

{
public class DagData
{
public string aiChannel;
public string aoChannel;
//Constructor
public DagData(...)
{
}
//Method
public double ReadDagData ()
{
}
//Method
public void WriteDagData(...
{
}
}
}

Tutorial: Introduction to Visual Studio and C#

42 Windows Forms Example

It is good practice to create a new file for each new class we define. Then we start by
defining a meaningful Namespace. Next we define our Class with necessary Fields,
Properties and Methods.

We also need to include the necessary Namespace our Class will need. In this example we
have included some 3.party Assemblies from National Instruments:

using NationalInstruments;
using NationalInstruments.DAQmx;

These Assemblies contains the driver to the NI USB-6008 DAQ device we are using.
The Assemblies we use must be added in the “References” folder in the Solution Explorer:

Solution Explorer v

=ein
= E Control Application
[+ |=d| Properties

EEISER cference
423 Micre Add Reference...
- Nat!c Add Service Reference. ..
<3 Natic

423 MNationalInstruments.DAQmMx

423 Nationallnstruments.Net

423 Nationallnstruments.NI4882

<23 Nationallnstruments. UI

<23 Nationallnstruments, UL WindowsForms
< System

+J System.Core

Main Application:

In our main application we start with including our Namespace:

using NationalInstruments;

using NationalInstruments.UI;
using NationalInstruments.UI.WindowsForms;
using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

using Tuc.Control;

namespace Control Application

{

public partial class Forml : Form

{
}

Tutorial: Introduction to Visual Studio and C#

43 Windows Forms Example

It is also a good idea to create different regions in order to structure your code better. This
can be done like this:

//Comment
region

. //Your Code
endregion

In this way our Main Application may look like this:

#using |.. |

—Inamespace Control_Application

{

= public partial class Forml

{

// Initialization--------------ccmcmcmcmeee—-

B

// Private Functions--------------cccccmoccmaa-

®

// Events----cmommcm oo

-

Tutorial: Introduction to Visual Studio and C#

8. Web Programming

8.1. Introduction

Today most of the applications focus on the Internet, where the applications can be viewed
in a standard Web Browser. Static Web pages are based on HTML and CSS. In order to create
more advanced applications, we need more powerful tools.

Important frameworks and tools for creating dynamic web pages:

e ASP.NET

e AJAX/ ASP.NET AJAX
e JavaScript

e Silverlight

These frameworks and tools will be explained below.

See the Tutorial “ASP.NET and Web Programming” for more details.

8.2. HTML

HTML, which stands for HyperText Markup Language, is the predominant markup language
for web pages. HTML is the basic building-blocks of webpages.

HTML is written in the form of HTML elements consisting of tags, enclosed in angle brackets
(like <html>), within the web page content. HTML tags normally come in pairs like <h1>and
</h1>. The first tag in a pair is the start tag, the second tag is the end tag (they are also
called opening tags and closing tags). In between these tags web designers can add text,
tables, images, etc.

8.3. Web Browser

The purpose of a web browser is to read HTML documents and compose them into visual or
audible web pages. The browser does not display the HTML tags, but uses the tags to
interpret the content of the page.

44

45 Web Programming

Today we have the following major Web Browsers:

e Internet Explorer (by Microsoft)
e Firefox (by Mozilla)

e Chrome (by Google)

e Safari (by Apple)

e Opera (by Opera from Norway)

8.4. CSS

Web browsers can also refer to Cascading Style Sheets (CSS) to define the appearance and
layout of text and other material.

The W3C, maintainer of both the HTML and the CSS standards

8.5. JavaScript

JavaScript is an object-oriented scripting language basically used to create dynamic web
pages. JavaScript is primarily used in the form of client-side JavaScript, implemented as part
of a web browser in order to provide enhanced user interfaces and dynamic websites.

8.6. ASP.NET

ASP.NET is a web application framework developed by Microsoft to allow programmers to
build dynamic web sites, web applications and web services.

ASP.NET is part of the Visual Studio package

It was first released in January 2002 with version 1.0 of the .NET Framework, and is the
successor to Microsoft's Active Server Pages (ASP) technology. ASP.NET is built on the
Common Language Runtime (CLR), allowing programmers to write ASP.NET code using any
supported .NET language, such as C# and VB.NET.

ASP.NET web pages or webpage, known officially as Web Forms], are the main building block
for application development. Web forms are contained in files with an “.aspx” extension.

Select “ASP.NET Application” in the “New Project” window:

Tutorial: Introduction to Visual Studio and C#

46 Web Programming

New Project

RIS | NET Framework 4 v | Sort by: | Default 2|
Installed Templates |
Type: Visual C#
S visual C#t ;’” ASP.MET Web Application Visual C# ¥p
N =C! A project for creating an application with a
‘Windows Web user interface
56“ ASP.MET MYC 2 Web Application Visual C#
® Office :’
Cloud Ec? ASP.NET Empty Web Application Visual C#
Measurement Studio P
Reporting ;g ASP.NET MYC 2 Empty Web Application Visual C#
SharePoint 7”
Silverlight C /’ ASP.NET Dynamic Data Entities Web Application Visual C#
Test { 3
WCP c:;/, ASP.NET Dynanmic Data Ling to SQL Web Application visual C#
WorkFlow L
® Other Languages @ch| asp.NET A3AX Server Control visual C#
Other Project Types hy
&
® Database @c| ASP.NET A2AX Server Control Extender visual C#
Modeling Projects)
Test Projects
ﬂﬁcﬂ ASP.NET Server Control Visual C#
Online Templates
Name: | webapplication! |
Location: | ci\Wisual Studio 2010iProjects v| [erowse... |
Solution name: ‘ Webapplication1 ‘ [V]create directory For solution
[“Jadd to source control

8.7. AJAX/ ASP.NET AJAX

AJAX is an acronym for Asynchronous JavaScript and XML. AJAX is a group of interrelated
web development methods used on the client-side to create interactive web applications.
With Ajax, web applications can send data to, and retrieve data from, a server
asynchronously (in the background) without interfering with the display and behavior of the
existing page.

ASP.NET AJAX is a set of extensions to ASP.NET developed by Microsoft for implementing
AJAX functionality.

8.8. Silverlight

Microsoft Silverlight is an application framework for writing and running browser plug-ins or
other rich internet applications, with features and purposes similar to those of Adobe Flash.
The run-time environment for Silverlight is available as a plug-in for most web browsers.
Silverlight is also one of the two application development platforms for Windows Phone 7/8.

The latest version is Silverlight 5.0.

Silverlight is based on WPF, so in Silverlight applications, user interfaces are declared in
Extensible Application Markup Language (XAML) and programmed using a subset of the .NET
Framework.

Tutorial: Introduction to Visual Studio and C#

9. Database Programming

Most of today’s applications use a backend database to store important data, e.g., Facebook,
Twitter, etc.

In order to use databases in our applications we need to know Structured Query language
(SQL). For more information about SQL, see the following Tutorial:

Structured Query Language (SQL)

In addition you need to know about database systems. We have different kind of database
systems and lots of different vendors. Since this Tutorial is about Visual Studio and C#, we
will use Microsoft SQL Server. For more information about database systems in general and
specially SQL Server, see the following Tutorial:

Introduction to Database Systems

The Tutorials are available from: http://home.hit.no/~hansha

9.1. ADO.NET

ADO.NET (ActiveX Data Object for .NET) is a set of computer software components that
programmers can use to access data and data services. It is a part of the base class library
that is included with the Microsoft .NET Framework. It is commonly used by programmers to
access and modify data stored in relational database systems, though it can also access data
in non-relational sources.

47

Hans-Petter Halvorsen, M.Sc.

E-mail: hans.p.halvorsen@hit.no

Blog: http://home.hit.no/~hansha/

[m] s [m]

[=]

University College of Southeast Norway

WWW.uUsSNn.Nno

