
University	College	of	Southeast	Norway	

http://home.hit.no/~hansha	

	

	

Introduction	to	Visual	
Studio	and	C#	

HANS-PETTER	HALVORSEN,	2016.09.26	

	

	

2	

	

	

Table	of	Contents	
1.	 Introduction	..	5	

1.1.	 Visual	Studio	...	5	

1.2.	 C#	..	6	

1.3.	 .NET	Framework	...	6	

1.4.	 Object-Oriented	Programming	(OOP)	..	7	

2.	 Visual	Studio	..	8	

2.1.	 Introduction	..	8	

2.2.	 Getting	Started	...	8	

2.2.1.	 Integrated	Development	Environment	(IDE)	...	8	

2.2.2.	 New	Project	...	9	

2.2.3.	 Solution	Explorer	...	10	

2.2.4.	 Toolbox	..	11	

2.2.5.	 Editors	and	Designers	..	12	

2.2.6.	 Properties	window	..	12	

2.2.7.	 Build	and	Debug	Tools	...	13	

3.	 Windows	Programming	...	15	

3.1.	 Introduction	..	15	

3.1.1.	 Windows	Forms	...	15	

3.1.2.	 WPF	...	16	

3.2.	 Hello	World	...	16	

4.	 Getting	Started	with	C#	...	19	

3	 	 Table	of	Contents	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

4.1.	 Introduction	..	19	

4.2.	 Data	Types	and	Variables	..	19	

4.2.1.	 Boolean	type	...	20	

4.2.2.	 Numeric	types:	Integrals,	Floating	Point,	Decimal	..	20	

4.2.3.	 String	type	...	20	

4.2.4.	 Arrays	..	21	

4.3.	 Control	Flow	...	21	

4.3.1.	 The	if	Statement	..	21	

4.3.2.	 The	switch	Statement	..	22	

4.4.	 Loops	...	23	

4.4.1.	 The	while	Loop	..	23	

4.4.2.	 The	do	Loop	...	23	

4.4.3.	 The	for	Loop	..	24	

4.4.4.	 The	foreach	Loop	...	24	

4.5.	 Methods	...	24	

4.5.1.	 Nonstatic	Methods	..	25	

4.5.2.	 Static	Methods	..	25	

4.6.	 Namespaces	..	26	

4.7.	 Classes	..	26	

4.7.1.	 Constructor	..	27	

4.8.	 Properties	...	29	

4.9.	 Naming	Convention	..	31	

5.	 More	Object-oriented	Techniques	..	33	

5.1.	 Inheritance	..	33	

5.2.	 Polymorphism	...	34	

5.3.	 Encapsulation	...	35	

4	 	 Table	of	Contents	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

6.	 Exception	Handling	..	36	

7.	 Windows	Forms	Example	..	38	

8.	 Web	Programming	..	44	

8.1.	 Introduction	..	44	

8.2.	 HTML	...	44	

8.3.	 Web	Browser	..	44	

8.4.	 CSS	..	45	

8.5.	 JavaScript	..	45	

8.6.	 ASP.NET	..	45	

8.7.	 AJAX/	ASP.NET	AJAX	...	46	

8.8.	 Silverlight	..	46	

9.	 Database	Programming	...	47	

9.1.	 ADO.NET	...	47	

	

	

5	

	

1.	 Introduction	
In	this	Tutorial	we	will	use	Visual	Studio	and	C#.	C#	is	the	programming	language,	while	
Visual	Studio	is	the	development	environment.	

Useful	links:	

Visual	Studio:	http://msdn.microsoft.com/en-us/library/dd831853.aspx	

C#:	http://msdn.microsoft.com/en-us/library/kx37x362.aspx	 	

1.1.	 Visual	Studio	
Microsoft	Visual	Studio	is	an	integrated	development	environment	(IDE)	from	Microsoft.	It	
can	be	used	to	develop	console	and	graphical	user	interface	applications	along	with	
Windows	Forms	applications,	web	sites,	web	applications,	and	web	services	in	both	native	
code	together	with	managed	code	for	all	platforms	supported	by	Microsoft	Windows,	
Windows	Phone,	Windows	CE,	.NET	Framework,	.NET	Compact	Framework	and	Microsoft	
Silverlight.	

Below	we	see	the	integrated	development	environment	(IDE)	in	Visual	Studio:	

	

6	 	 Introduction	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

New	projects	are	created	from	the	“New	Project”	window:	

	

1.2.	 C#	
C#	is	pronounced	“see	sharp”.	C#	is	an	object-oriented	programming	language	and	part	of	
the	.NET	family	from	Microsoft.	C#	is	very	similar	to	C++	and	Java.	C#	is	developed	by	
Microsoft	and	works	only	on	the	Windows	platform.	

1.3.	 .NET	Framework	
The	.NET	Framework	(pronounced	“dot	net”)	is	a	software	framework	that	runs	primarily	on	
Microsoft	Windows.	It	includes	a	large	library	and	supports	several	programming	languages	
which	allow	language	interoperability	(each	language	can	use	code	written	in	other	
languages).	The	.NET	library	is	available	to	all	the	programming	languages	that	.NET	
supports.	Programs	written	for	the	.NET	Framework	execute	in	a	software	environment,	
known	as	the	Common	Language	Runtime	(CLR),	an	application	virtual	machine	that	
provides	important	services	such	as	security,	memory	management,	and	exception	handling.	
The	class	library	and	the	CLR	together	constitute	the	.NET	Framework.	

7	 	 Introduction	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

1.4.	 Object-Oriented	Programming	(OOP)	
Object-oriented	programming	(OOP)	is	a	programming	language	model	organized	around	
"objects"	rather	than	"actions"	and	data	rather	than	logic.	Historically,	a	program	has	been	
viewed	as	a	logical	procedure	that	takes	input	data,	processes	it,	and	produces	output	data.	

The	first	step	in	OOP	is	to	identify	all	the	objects	you	want	to	manipulate	and	how	they	
relate	to	each	other,	an	exercise	often	known	as	data	modeling.	Once	you've	identified	an	
object,	you	generalize	it	as	a	class	of	objects	and	define	the	kind	of	data	it	contains	and	any	
logic	sequences	that	can	manipulate	it.	Each	distinct	logic	sequence	is	known	as	a	method.	A	
real	instance	of	a	class	is	called	an	“object”	or	an	“instance	of	a	class”.	The	object	or	class	
instance	is	what	you	run	in	the	computer.	Its	methods	provide	computer	instructions	and	
the	class	object	characteristics	provide	relevant	data.	You	communicate	with	objects	-	and	
they	communicate	with	each	other.	

Important	features	with	OOP	are:	

• Classes	and	Objects	
• Inheritance	
• Polymorphism	
• Encapsulation	 	

Simula	was	the	first	object-oriented	programming	language.	Simula	was	developed	in	the	
1960s	by	Kristen	Nygaard	from	Norway.	

Java,	Python,	C++,	Visual	Basic	.NET	and	C#	are	popular	OOP	languages	today.	 	

Since	Simula-type	objects	are	reimplemented	in	C++,	Java	and	C#	the	influence	of	Simula	is	
often	understated.	The	creator	of	C++	(1979),	Bjarne	Stroustrup	(from	Denmark),	has	
acknowledged	that	Simula	was	the	greatest	influence	on	him	to	develop	C++.	

	

8	

	

2.	 Visual	Studio	

2.1.	 Introduction	
Home	page	of	Visual	Studio:	http://www.microsoft.com/visualstudio	

There	exist	different	versions	of	Visual	Studio,	such	as	Visual	Studio	Express	(free),	Visual	
Studio	Professional,	Visual	Studio	Premium	and	Visual	Studio	Ultimate.	

2.2.	 Getting	Started	

2.2.1.	 Integrated	Development	Environment	(IDE)	

The	Visual	Studio	product	family	shares	a	single	integrated	development	environment	(IDE)	
that	is	composed	of	several	elements:	the	Menu	bar,	Standard	toolbar,	various	tool	windows	
docked	or	auto-hidden	on	the	left,	bottom,	and	right	sides,	as	well	as	the	editor	space.	The	
tool	windows,	menus,	and	toolbars	available	depend	on	the	type	of	project	or	file	you	are	
working	in.	

Below	we	see	the	Visual	Studio	IDE	(Integrated	Development	Environment):	

	

9	 	 Visual	Studio	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

2.2.2.	 New	Project	 	

The	first	thing	you	do	when	you	want	to	create	a	new	application	is	to	create	a	new	project.	

This	can	be	done	from	the	Start	Page:	

	

Or	from	the	File	menu:	

	

Then	the	“New	Project”	window	appears:	

10	 	 Visual	Studio	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

	

In	this	window	you	will	select	an	appropriate	template	based	on	what	kind	of	application	you	
want	to	create,	and	a	name	and	location	for	your	project	and	solution.	

The	most	common	applications	are:	

• Windows	Form	Application	
• Console	Application	
• WPF	Application	
• ASP.NET	Web	Application	
• Silverlight	Application	

2.2.3.	 Solution	Explorer	

Solutions	and	projects	contain	items	that	represent	the	references,	data	connections,	
folders,	and	files	that	you	need	to	create	your	application.	A	solution	container	can	contain	
multiple	projects	and	a	project	container	typically	contains	multiple	items.	

11	 	 Visual	Studio	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

	

2.2.4.	 Toolbox	

The	Toolbox	contains	all	the	necessary	controls,	etc.	you	need	to	create	your	user	interface.	
See	Figure	below.	

	

The	Toolbox	contains	all	the	controls,	etc.	we	can	use	
in	our	user	interface.	

In	order	to	use	them	in	our	user	interface,	we	just	drag	
and	drop	them	to	the	“Form”,	as	shown	below:	

	

12	 	 Visual	Studio	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

2.2.5.	 Editors	and	Designers	

Visual	Studio	has	different	editors	and	design	tools.	

Graphical	User	Interface	Designer:	

	

Code	Editor:	

	

2.2.6.	 Properties	window	

Each	control	we	have	on	our	user	interface	has	lots	of	Properties	we	can	set.	

13	 	 Visual	Studio	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

This	is	done	in	the	Properties	window:	

	

2.2.7.	 Build	and	Debug	Tools	

In	Visual	Studio	we	have	lots	of	Build	and	Debugging	Tools.	 	

Build	menu:	

Below	we	see	the	Build	menu:	 	

	

The	most	used	tool	is	“Build	Solution”	(Shortcut	Key:	F6).	

Debug	menu:	

Below	we	see	the	Debug	menu:	 	

	

14	 	 Visual	Studio	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

	

The	most	used	tool	is	“Start	Debugging”	(Shortcut	Key:	F5).	

	

15	

	

3.	 Windows	Programming	

3.1.	 Introduction	
When	creating	ordinary	Windows	applications,	we	can	select	between	the	following:	

• Windows	Forms	Application	
• WPF	Applications	(Windows	Presentation	Foundation)	

Windows	Forms	is	the	standard	way	of	creating	Windows	applications	and	has	existed	in	
many	years,	even	before	.NET	1.0	(2002)	was	introduced.	WPF	is	a	new	approach	from	
creating	Windows	applications	and	was	introduced	with	.NET	Framework	3.0	(2006).	

For	example	has	the	Visual	Studio	IDE	been	entirely	rewritten	using	WPF.	

Windows	Forms	Application	and	WPF	Applications	will	be	explained	in	more	detail	below.	

3.1.1.	 Windows	Forms	

Windows	Forms	is	the	standard	way	of	creating	Windows	applications.	

Select	“Windows	Forms	Application”	in	the	“New	Project”	window:	

	

16	 	 Windows	Programming	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

3.1.2.	 WPF	

Developed	by	Microsoft,	the	Windows	Presentation	Foundation	(or	WPF)	is	a	computer-
software	graphical	subsystem	for	rendering	user	interfaces	in	Windows-based	applications.	

WPF	is	intended	to	take	over	for	the	traditional	Windows	Forms.	

The	graphical	user	interface	in	WPF	is	designed	using	XAML	(Extensible	Application	Markup	
Language).	

XAML:	

Following	the	success	of	markup	languages	for	web	development,	WPF	introduces	a	new	
language	known	as	eXtensible	Application	Markup	Language	(XAML),	which	is	based	on	XML.	
XAML	is	designed	as	a	more	efficient	method	of	developing	application	user	interfaces	

Select	“WPF	Application”	in	the	“New	Project”	window:	

	

3.2.	 Hello	World	
We	start	by	creating	a	traditional	“Hello	World”	application	using	Windows	Forms.	The	
application	is	shown	below:	

17	 	 Windows	Programming	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

	

The	Visual	Studio	IDE	looks	like	this:	

	

In	this	project	we	use	a	simple	TextBox	(textBox1)	and	when	we	start	the	program	the	text	
“Hello	World”	is	written	to	the	TextBox.	

The	code	is	as	follows:	

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace WindowsFormsApplication1
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

18	 	 Windows	Programming	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

 private void Form1_Load(object sender, EventArgs e)
 {

 textBox1.Text = "Hello World";

 }

 }
}

	

	

	

	

19	

	

4.	 Getting	Started	with	C#	
C#	is	a	modern	Object-oriented	programming	language.	

Object-oriented	programming	(OOP)	is	a	programming	paradigm	using	"objects"	–	data	
structures	consisting	of	data	fields	and	methods	together	with	their	interactions	–	to	design	
applications	and	computer	programs.	Programming	techniques	may	include	features	such	as	
data	abstraction,	encapsulation,	messaging,	modularity,	polymorphism,	and	inheritance.	 	

4.1.	 Introduction	
In	this	chapter	we	will	start	with	the	basic	all	programming	languages	have:…	

• Data	Types	and	Variables	
• Control	Flow:	If-Else,	etc.	
• Loops:	While	Loops,	For	Loops,	etc.	

Further	we	will	introduce	the	following:	

• Namespaces	
• Classes	
• Data	Fields	
• Methods	
• Properties	

In	the	next	chapter	we	will	go	more	in	depth	of	what	Object-oriented	programming	is	and	
introduce	the	following	important	OOP	topics:	

• Inheritance	
• Polymorphism	
• Encapsulation	 	

Note!	C#	is	case-sensitive.	 	

4.2.	 Data	Types	and	Variables	

20	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

“Variables”	are	simply	storage	locations	for	data.	You	can	place	data	into	them	and	retrieve	
their	contents	as	part	of	a	C#	expression.	The	interpretation	of	the	data	in	a	variable	is	
controlled	through	“Types”.	 	

The	C#	simple	types	consist	of:	

• Boolean	type	
• Numeric	types:	Integrals,	Floating	Point,	Decimal	
• String	type	

4.2.1.	 Boolean	type	

Boolean	types	are	declared	using	the	keyword	“bool”.	They	have	two	values:	“true”	or	
“false”.	In	other	languages,	such	as	C	and	C++,	boolean	conditions	can	be	satisfied	where	0	
means	false	and	anything	else	means	true.	However,	in	C#	the	only	values	that	satisfy	a	
boolean	condition	is	true	and	false,	which	are	official	keywords.	

Example:	

bool content = true;
bool noContent = false;

4.2.2.	 Numeric	types:	Integrals,	Floating	Point,	
Decimal	

Example:	

int i=35;
long y=654654;

	

float x;
double y;
decimal z;

4.2.3.	 String	type	

Example:	

string myString=”Hei på deg”;

	

Special	characters	that	may	be	used	in	strings:	

21	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

	

	

4.2.4.	 Arrays	

Example:	

int[] myInts = { 5, 10, 15 };

4.3.	 Control	Flow	
To	be	able	to	control	the	flow	in	your	program	is	important	in	every	programming	language.	

The	two	most	important	techniques	are:	

• The	if	Statement	
• The	switch	Statement	

4.3.1.	 The	if	Statement	

The	if	statement	is	probably	the	most	used	mechanism	to	control	the	flow	in	your	
application.	

An	if	statement	allows	you	to	take	different	paths	of	logic,	depending	on	a	given	condition.	
When	the	condition	evaluates	to	a	boolean	true,	a	block	of	code	for	that	true	condition	will	
execute.	You	have	the	option	of	a	single	if	statement,	multiple	else	if	statements,	and	an	
optional	else	statement.	

Example:	

bool myTest;

22	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

myTest=false;

if (myTest==false)

MessageBox.Show("Hello");

If	we	have	more	than	one	line	of	code	that	that	shall	be	executed,	we	need	to	use	braces,	
e.g.:	

bool myTest;

myTest=false;

if (myTest == false)
{

MessageBox.Show("Hello1");
MessageBox.Show("Hello2");

}

For	more	complex	logic	we	use	the	if	…	else	statement.	

Example:	

bool myTest;

myTest=true;

if (myTest == false)
{

MessageBox.Show("Hello1");
}
else
{

MessageBox.Show("Hello2");
}

Or	you	can	use	nested	if…	else	if	sentences.	

Example:	

int myTest;

myTest=2;

if (myTest == 1)
{

MessageBox.Show("Hello1");
}
else if (myTest == 2)
{

MessageBox.Show("Hello2");
}
else
{

MessageBox.Show("Hello3");
}

4.3.2.	 The	switch	Statement	

Another	form	of	selection	statement	is	the	switch	statement,	which	executes	a	set	of	logic	
depending	on	the	value	of	a	given	parameter.	The	types	of	the	values	a	switch	statement	
operates	on	can	be	booleans,	enums,	integral	types,	and	strings.	

23	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

Example:	

switch (myTest)
{

case 1:
MessageBox.Show("Hello1");
break;

case 2:
MessageBox.Show("Hello2");

 break;

default:
 MessageBox.Show("Hello3");
 break;
}

4.4.	 Loops	
In	C#	we	have	different	kind	of	loops:	

• The	while	loop	
• The	do	loop	
• The	for	loop	
• The	foreach	loop	

4.4.1.	 The	while	Loop	

A	while	loop	will	check	a	condition	and	then	continues	to	execute	a	block	of	code	as	long	as	
the	condition	evaluates	to	a	boolean	value	of	true.	

Example:	

int myInt = 0;

while (myInt < 10)
{

MessageBox.Show("Inside Loop: " + myInt.ToString());
 myInt++;
}
MessageBox.Show("Outside Loop: " + myInt.ToString());

4.4.2.	 The	do	Loop	

A	do	loop	is	similar	to	the	while	loop,	except	that	it	checks	its	condition	at	the	end	of	the	
loop.	This	means	that	the	do	loop	is	guaranteed	to	execute	at	least	one	time.	On	the	other	
hand,	a	while	loop	evaluates	its	boolean	expression	at	the	beginning	and	there	is	generally	
no	guarantee	that	the	statements	inside	the	loop	will	be	executed,	unless	you	program	the	
code	to	explicitly	do	so.	

Example:	

24	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

int myInt = 0;

do
{

MessageBox.Show("Inside Loop: " + myInt.ToString());
myInt++;

} while (myInt < 10);
MessageBox.Show("Outside Loop: " + myInt.ToString());

4.4.3.	 The	for	Loop	

A	for	loop	works	like	a	while	loop,	except	that	the	syntax	of	the	for	loop	includes	
initialization	and	condition	modification.	for	loops	are	appropriate	when	you	know	exactly	
how	many	times	you	want	to	perform	the	statements	within	the	loop.	

Example:	

for (int i = 0; i < 10; i++)
{

MessageBox.Show("Inside Loop: " + myInt.ToString());
 myInt++;
}
MessageBox.Show("Outside Loop: " + myInt.ToString());

4.4.4.	 The	foreach	Loop	

A	foreach	loop	is	used	to	iterate	through	the	items	in	a	list.	It	operates	on	arrays	or	
collections.	

Example:	

string[] names = { "Elvis", "Beatles", "Eagles", "Rolling Stones" };

foreach (string person in names)
{

MessageBox.Show(person);
}

4.5.	 Methods	
Methods	are	extremely	useful	because	they	allow	you	to	separate	your	logic	into	different	
units.	You	can	pass	information	to	methods,	have	it	perform	one	or	more	statements,	and	
retrieve	a	return	value.	The	capability	to	pass	parameters	and	return	values	is	optional	and	
depends	on	what	you	want	the	method	to	do.	

Methods	are	similar	to	functions,	procedure	or	subroutine	used	in	other	programming	
languages.	The	difference	is	that	a	method	is	always	a	part	of	a	class.	

Example:	

public void ShowCarColor(string color)

25	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

{

MessageBox.Show("My Car is: " + color);

}

We	learn	more	about	methods	in	the	Classes	section	below.	

We	have	2	kinds	of	Methods:	

• Static	Methods	
• Nonstatic	Methods	(Instance	Method)	

Static	Methods	belongs	to	the	whole	class,	while	nonstatic	Methods	belong	to	each	instance	
created	from	the	class.	

4.5.1.	 Nonstatic	Methods	

Example:	

We	define	the	class:	

class Car
{

//Nonstatic/Instance Method
 public void SetColor(string color)
 {

 MessageBox.Show("My Car is: " + color);

 }
}

Then	we	use	it:	

Car myCar = new Car(); //We create an Instance of the Class

myCar.SetColor("blue"); //We call the Method

4.5.2.	 Static	Methods	

Example:	

We	define	the	class:	

class Boat
{

 //Static Method
 public static void SetColor(string color)
 {

 MessageBox.Show("My Boat is: " + color);

 }
}

26	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

Then	we	use	it:	

Boat.SetColor("green");

i.e.,	we	don’t	need	to	create	an	object/instantiating	the	class	before	we	use	the	Static	
Method.	

4.6.	 Namespaces	
Namespaces	are	C#	program	elements	designed	to	help	you	organize	your	programs.	They	
also	provide	assistance	in	avoiding	name	clashes	between	two	sets	of	code.	Implementing	
Namespaces	in	your	own	code	is	a	good	habit	because	it	is	likely	to	save	you	from	problems	
later	when	you	want	to	reuse	some	of	your	code.	

You	specify	the	Namespaces	you	want	to	use	in	the	top	of	your	code.	

Example:	

When	you	create	a	new	Windows	Forms	application,	the	following	default	namespaces	will	
be	included.	

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
…

It	is	just	to	add	more	when	you	need	it.	

More	about	Namespaces	later.	

4.7.	 Classes	
The	first	step	in	OOP	is	to	identify	all	the	objects	you	want	to	manipulate	and	how	they	
relate	to	each	other,	an	exercise	often	known	as	data	modeling.	Once	you've	identified	an	
object,	you	generalize	it	as	a	class	of	objects	and	define	the	kind	of	data	it	contains	and	any	
logic	sequences	that	can	manipulate	it.	Each	distinct	logic	sequence	is	known	as	a	method.	A	
real	instance	of	a	class	is	called	an	“object”	or	an	“instance	of	a	class”.	The	object	or	class	
instance	is	what	you	run	in	the	computer.	Its	methods	provide	computer	instructions	and	
the	class	object	characteristics	provide	relevant	data.	You	communicate	with	objects	-	and	
they	communicate	with	each	other.	

27	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

Everything	in	C#	is	based	on	Classes.	Classes	are	declared	by	using	the	keyword	class	
followed	by	the	class	name	and	a	set	of	class	members	surrounded	by	curly	braces.	 	

A	class	normally	consists	of	Methods,	Fields	and	Properties.	

Every	class	has	a	constructor,	which	is	called	automatically	any	time	an	instance	of	a	class	is	
created.	The	purpose	of	constructors	is	to	initialize	class	members	when	an	instance	of	the	
class	is	created.	Constructors	do	not	have	return	values	and	always	have	the	same	name	as	
the	class.	

Example:	

We	define	the	following	class:	

class Car
{

public string color; //Field

//Method
public void ShowCarColor()
{

 MessageBox.Show("My Car is: " + color);

}

}

Then	we	can	use	it:	

Car myCar = new Car(); //We create an Instance of the Class

myCar.color = "blue"; //We set a value for the color Field

myCar.ShowCarColor(); //We call the Method

The	result	is	as	follows:	

	

4.7.1.	 Constructor	

The	purpose	of	constructors	is	to	initialize	class	members	when	an	instance	of	the	class	is	
created.	

Example:	

We	can	use	a	Constructor	to	create	a	“default”	color	for	our	car.	

We	define	the	class:	

28	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

class Car
{

 public string color; //Field

 //Constructor - Used to initialize the Class
 public Car()
 {
 color="green";
 }

 //Method
 public void ShowCarColor()
 {

 MessageBox.Show("My Car is: " + color);

 }
}

Then	we	can	use	it:	

Car myCar = new Car(); //We create an Instance of the Class

myCar.ShowCarColor(); //We call the Method

myCar.color = "blue"; //We set a value for the color Field

myCar.ShowCarColor(); //We call the Method

The	results	are	as	follows:	

	

…	

	

Example:	

We	can	also	do	the	following:	

class Car
 {

 public string color; //Field

 //Constructor - Used to initialize the Class
 public Car(string initColor)
 {
 color = initColor;

29	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

 }

 //Method
 public void ShowCarColor()
 {

 MessageBox.Show("My Car is: " + color);

 }
 }

Then	we	use	it:	

Car myCar = new Car("green"); //We create an Instance of the Class

myCar.ShowCarColor(); //We call the Method

New	feature:	Initialization	an	object	without	a	Constructor:	

In	C#	4.0	we	can	do	the	following:	

We	define	the	Class	(without	any	contructor):

class Car
{

 public string color; //Field
 public string model; //Field

 //Method
 public void ShowCarColor()
 {

 MessageBox.Show("My Car Color is: " + color);
 MessageBox.Show("My Car Model is: " + model);

 }
}

Then	we	do	the	following:	

Car myCar = new Car {color="white", model="2004"};

myCar.ShowCarColor(); //We call the Method

4.8.	 Properties	
Properties	provide	the	opportunity	to	protect	a	field	in	a	class	by	reading	and	writing	to	it	
through	the	property.	In	other	languages,	this	is	often	accomplished	by	programs	
implementing	specialized	getter	and	setter	methods.	C#	properties	enable	this	type	of	
protection	while	also	letting	you	access	the	property	just	like	it	was	a	field.	 	

Example:	

We	define	a	Class	with	Properties	and	a	Method:	

class Car
{

30	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

 public string Name {get; set;}
 public string Color {get; set;}

 public void ShowCarProperties()
 {

 MessageBox.Show("My Car Name is: " + Name);
 MessageBox.Show("My Car Color is: " + Color);

 }

}

Then	we	can	use	it:	

Car myCar = new Car();

myCar.Name="Volvo";
myCar.Color="Blue";

myCar.ShowCarProperties();

The	results	are:	

	

…	

	

So	far,	the	only	class	members	you've	seen	are	Fields,	Properties,	Methods,	and	
Constructors.	Here	is	a	complete	list	of	the	types	of	members	you	can	have	in	your	classes:	 	

• Constructors	
• Destructors	(opposite	of	Constructors)	
• Fields	
• Methods	
• Properties	
• Indexers	
• Delegates	
• Events	
• Nested	Classes	

31	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

4.9.	 Naming	Convention	
There	is	different	name	convention	for	how	to	specify	your	variables,	classes	and	Methods,	
etc.	

Camel	notation:	

For	variables	and	parameters/arguments	we	normally	use	“Camel	notation”.	

Examples:	

string myCar;
int number;
string backColor;

→	In	Camel	casing	the	first	letter	of	an	identifier	is	lowercase	and	the	first	letter	of	each	
subsequent	concatenated	word	is	capitalized.	

Pascal	notation:	

For	classes,	methods	and	properties,	we	normally	use	“Pascal	notation”.	

Examples:	

class Car
{
 void ShowCarColor()
 {
 …
 }
}

→	In	Pascal	casing	the	first	letter	in	the	identifier	and	the	first	letter	of	each	subsequent	
concatenated	word	are	capitalized.	

For	Namespaces	we	use	Pascal	casing	and	a	dot	separator.	

Examples:	

System.Drawing
System.Collections.Generics

Controls:	

For	controls	on	your	user	interface	we	either	use	“Pascal	notation”	or	“Hungarian	notation”,	
but	stick	to	one	of	them!	

Examples:	

“Pascal	notation”:	

LoginName
LoginPassword

32	 	 Getting	Started	with	C#	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

“Hungarian	notation”:	

txtName
txtPassword
lblName
btnCancel

Where	“txt”	means	it	is	a	Text	Control,	“lbl”	a	Label	Control,	“btn”	a	Button	Control,	etc.	

Acronyms:	

Casing	of	acronyms	depends	on	the	length	of	the	acronym.	All	acronyms	are	at	least	two	
characters	long.	If	an	acronym	is	exactly	two	characters,	it	is	considered	a	short	acronym.	An	
acronym	of	three	or	more	characters	is	a	long	acronym.	

In	general,	you	should	not	use	abbreviations	or	acronyms.	These	make	your	names	less	
readable.	Similarly,	it	is	difficult	to	know	when	it	is	safe	to	assume	that	an	acronym	is	widely	
recognized.	

But	if	you	must,	the	rules	are	as	follows:	

Short	acronym	Examples	(two	characters):	

DBRate

A	property	named	DBRate	is	an	example	of	a	short	acronym	(DB)	used	as	the	first	word	of	a	
Pascal-cased	identifier.	 	

ioChannel

A	parameter	named	ioChannel	is	an	example	of	a	short	acronym	(IO)	used	as	the	first	word	
of	a	camel-cased	identifier.	

Long	acronym	Examples	(three	or	more	characters):	

XmlWriter

A	class	named	XmlWriter	is	an	example	of	a	long	acronym	used	as	the	first	word	of	a	Pascal-
cased	identifier.	 	

htmlReader

A	parameter	named	htmlReader	is	an	example	of	a	long	acronym	used	as	the	first	word	of	a	
camel-cased	identifier.	

	

	

	

33	

	

5.	 More	Object-oriented	
Techniques	

In	this	chapter	we	will	introduce	the	following	Object-oriented	techniques:	

• Inheritance	
• Polymorphism	
• Encapsulation	 	

5.1.	 Inheritance	
Inheritance	is	one	of	the	primary	concepts	of	object-oriented	programming.	It	allows	you	to	
reuse	existing	code.	Through	effective	employment	of	reuse,	you	can	save	time	in	your	
programming.	 	

Example:	

We	define	the	Base	class:	

class Car
{

 public void SetColor(string color)
 {

 MessageBox.Show("My Car is: " + color);

 }
}

Then	we	define	a	new	class	that	inherits	from	the	Base	Class:	

class Volvo : Car
{

 //In this simple Example this class does nothing!

}

Then	we	start	using	the	classes:	

Car myCar = new Car();
myCar.SetColor("blue");

Volvo myVolvo = new Volvo();

34	 	 More	Object-oriented	Techniques	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

myVolvo.SetColor("green");

As	you	can	see	we	can	use	the	“SetColor()”	Method	that	has	been	defined	in	the	Base	Class.	

5.2.	 Polymorphism	
Another	primary	concept	of	object-oriented	programming	is	Polymorphism.	It	allows	you	to	
invoke	derived	class	methods	through	a	base	class	reference	during	run-time.	

Example:	

We	start	with	a	Base	Class:	

class Car
{
 public virtual void CarType()
 {
 MessageBox.Show("I am a Car");
 }
}

The	virtual	modifier	indicates	to	derived	classes	that	they	can	override	this	method.	

Then	we	create	3	new	Classes	that	derive	from	the	Base	Class:	

class Volvo : Car
{
 public override void CarType()
 {
 MessageBox.Show("I am a Volvo");
 }
}

class Ford : Car
{
 public override void CarType()
 {
 MessageBox.Show("I am a Ford");
 }
}

class Toyota : Car
{
 public override void CarType()
 {
 MessageBox.Show("I am a Toyota");
 }
}

These	3	classes	inherit	the	Car	class.	Each	class	has	a	CarType()	method	and	each	CarType()	
method	has	an	override	modifier.	The	override	modifier	allows	a	method	to	override	the	
virtual	method	of	its	base	class	at	run-time.	

Then	we	can	use	it:	

Car[] car = new Car[4];

car[0] = new Car();

35	 	 More	Object-oriented	Techniques	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

car[1] = new Volvo();
car[2] = new Ford();
car[3] = new Toyota();

foreach (Car carmodel in car)
{
 carmodel.CarType();
}

The	result	is:	

	 …	 	 …	 	 …	 	

→	This	is	Polymorphism.	

5.3.	 Encapsulation	
Encapsulation	means	that	the	internal	representation	of	an	object	is	generally	hidden	from	
view	outside	of	the	object's	definition.	Typically,	only	the	object's	own	methods	can	directly	
inspect	or	manipulate	its	fields.	

We	can	set	different	Access	rights	on	Classes	and	Methods:	

	

	

	

	

36	

	

6.	 Exception	Handling	
In	programming	error	and	exception	handling	is	very	important.	C#	has	built-in	and	ready	to	
use	mechanism	to	handle	this.	This	mechanism	is	based	on	the	keywords	try,	catch,	throw	
and	finally.	

Exceptions	are	unforeseen	errors	that	happen	in	your	programs.	Most	of	the	time,	you	can,	
and	should,	detect	and	handle	program	errors	in	your	code.	For	example,	validating	user	
input,	checking	for	null	objects,	and	verifying	the	values	returned	from	methods	are	what	
you	expect,	are	all	examples	of	good	standard	error	handling	that	you	should	be	doing	all	the	
time.	 	

However,	there	are	times	when	you	don't	know	if	an	error	will	occur.	For	example,	you	can't	
predict	when	you'll	receive	a	file	I/O	error,	run	out	of	system	memory,	or	encounter	a	
database	error.	These	things	are	generally	unlikely,	but	they	could	still	happen	and	you	want	
to	be	able	to	deal	with	them	when	they	do	occur.	This	is	where	exception	handling	comes	in.	 	

When	exceptions	occur,	they	are	said	to	be	“thrown”.	C#	uses	the	keywords	try,	catch,	throw	
and	finally.	It	works	like	this:	A	method	will	try	to	execute	a	piece	of	code.	If	the	code	detects	
a	problem,	it	will	throw	an	error	indication,	which	your	code	can	catch,	and	no	matter	what	
happens,	it	finally	executes	a	special	code	block	at	the	end.	

The	syntax	is	as	follows:	

MyMethod()
{

 try

{
 ... //Do Something that can cause an Exception
}

 catch
{
 ... //Handle Exceptions
}

 finally
{
 ... //Clean Up
}

}

Example:	

public void WriteDaqData(double analogDataOut)
 {

 Task analogOutTask = new Task();

37	 	 Exception	Handling	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

 AOChannel myAOChannel;

 try
 {

 myAOChannel = analogOutTask.AOChannels.CreateVoltageChannel(
 aoChannel,
 "myAOChannel",
 0,
 5,
 AOVoltageUnits.Volts
);

 AnalogSingleChannelWriter writer = new
 AnalogSingleChannelWriter(analogOutTask.Stream);

 writer.WriteSingleSample(true, analogDataOut);
 }
 catch (Exception e)
 {
 string errorMessage;

 errorMessage = e.Message.ToString();

 }

 finally
 {
 analogOutTask.Stop();
 }

 }

	

	

38	

	

7.	 Windows	Forms	
Example	

In	this	chapter	we	will	go	through	a	large	example.	In	this	example	we	will	create	an	
application	in	Visual	Studio	that	controls	the	following	water	tank	process:	

	
	

The	purpose	is	to	control	the	level	in	the	water	tank.	In	order	to	communicate	with	the	
physical	process,	we	use	a	NI	USB-6008	DAQ	device:	

	

We	will	not	show	all	the	details	in	the	code,	but	focus	on	the	structure.	

Below	we	see	the	user	interface	we	have	created	in	Visual	Studio:	

39	 	 Windows	Forms	Example	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

	

	

Below	we	see	the	Visual	Studio	project:	

	

	

We	start	with	defining	the	classes	we	need	in	our	application.	

In	the	Solution	Explorer	we	have	defined	a	“Classes”	folder	where	we	put	all	the	classes	we	
create:	

40	 	 Windows	Forms	Example	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

	

In	order	to	create	new	classes	we	right-click	in	the	Solution	Explorer	and	select	“Add-New	
Item…”:	

	

	

Next	we	select	the	Class	item	in	the	“Add	New	Item”	window:	

41	 	 Windows	Forms	Example	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

	

Classes:	

We	start	with	the	“Daq”	Class	that	contains	logic	for	reading	and	writing	to	the	DAQ	device:	

//Include necessary Namespaces
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using NationalInstruments;
using NationalInstruments.DAQmx;

namespace Tuc.Control //We define a useful namespace
{
 public class DaqData
 {

 public string aiChannel;
 public string aoChannel;

 //Constructor
 public DaqData(...)
 {
 ...
 }

//Method
 public double ReadDaqData()
 {

 ...
 }

//Method

 public void WriteDaqData(...)
 {
 ...
 }
 }
}

42	 	 Windows	Forms	Example	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

It	is	good	practice	to	create	a	new	file	for	each	new	class	we	define.	Then	we	start	by	
defining	a	meaningful	Namespace.	Next	we	define	our	Class	with	necessary	Fields,	
Properties	and	Methods.	

We	also	need	to	include	the	necessary	Namespace	our	Class	will	need.	In	this	example	we	
have	included	some	3.party	Assemblies	from	National	Instruments:	

using NationalInstruments;
using NationalInstruments.DAQmx;

These	Assemblies	contains	the	driver	to	the	NI	USB-6008	DAQ	device	we	are	using.	

The	Assemblies	we	use	must	be	added	in	the	“References”	folder	in	the	Solution	Explorer:	

	

	

Main	Application:	

In	our	main	application	we	start	with	including	our	Namespace:	

using NationalInstruments;
using NationalInstruments.UI;
using NationalInstruments.UI.WindowsForms;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using Tuc.Control;

namespace Control_Application
{
 public partial class Form1 : Form
 {

...
 }
}

43	 	 Windows	Forms	Example	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

It	is	also	a	good	idea	to	create	different	regions	in	order	to	structure	your	code	better.	This	
can	be	done	like	this:	

//Comment
region

... //Your Code
endregion

In	this	way	our	Main	Application	may	look	like	this:	

	

	

	

	

	

44	

	

8.	 Web	Programming	

8.1.	 Introduction	
Today	most	of	the	applications	focus	on	the	Internet,	where	the	applications	can	be	viewed	
in	a	standard	Web	Browser.	Static	Web	pages	are	based	on	HTML	and	CSS.	In	order	to	create	
more	advanced	applications,	we	need	more	powerful	tools.	

Important	frameworks	and	tools	for	creating	dynamic	web	pages:	

• ASP.NET	
• AJAX/	ASP.NET	AJAX	
• JavaScript	
• Silverlight	

These	frameworks	and	tools	will	be	explained	below.	

See	the	Tutorial	“ASP.NET	and	Web	Programming”	for	more	details.	

8.2.	 HTML	
HTML,	which	stands	for	HyperText	Markup	Language,	is	the	predominant	markup	language	
for	web	pages.	HTML	is	the	basic	building-blocks	of	webpages.	

HTML	is	written	in	the	form	of	HTML	elements	consisting	of	tags,	enclosed	in	angle	brackets	
(like	<html>),	within	the	web	page	content.	HTML	tags	normally	come	in	pairs	like	<h1>	and	
</h1>.	The	first	tag	in	a	pair	is	the	start	tag,	the	second	tag	is	the	end	tag	(they	are	also	
called	opening	tags	and	closing	tags).	In	between	these	tags	web	designers	can	add	text,	
tables,	images,	etc.	

8.3.	 Web	Browser	
The	purpose	of	a	web	browser	is	to	read	HTML	documents	and	compose	them	into	visual	or	
audible	web	pages.	The	browser	does	not	display	the	HTML	tags,	but	uses	the	tags	to	
interpret	the	content	of	the	page.	

45	 	 Web	Programming	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

Today	we	have	the	following	major	Web	Browsers:	

• Internet	Explorer	(by	Microsoft)	
• Firefox	(by	Mozilla)	
• Chrome	(by	Google)	
• Safari	(by	Apple)	
• Opera	(by	Opera	from	Norway)	

8.4.	 CSS	
Web	browsers	can	also	refer	to	Cascading	Style	Sheets	(CSS)	to	define	the	appearance	and	
layout	of	text	and	other	material.	 	

The	W3C,	maintainer	of	both	the	HTML	and	the	CSS	standards	

8.5.	 JavaScript	
JavaScript	is	an	object-oriented	scripting	language	basically	used	to	create	dynamic	web	
pages.	JavaScript	is	primarily	used	in	the	form	of	client-side	JavaScript,	implemented	as	part	
of	a	web	browser	in	order	to	provide	enhanced	user	interfaces	and	dynamic	websites.	

8.6.	 ASP.NET	
ASP.NET	is	a	web	application	framework	developed	by	Microsoft	to	allow	programmers	to	
build	dynamic	web	sites,	web	applications	and	web	services.	 	

ASP.NET	is	part	of	the	Visual	Studio	package	

It	was	first	released	in	January	2002	with	version	1.0	of	the	.NET	Framework,	and	is	the	
successor	to	Microsoft's	Active	Server	Pages	(ASP)	technology.	ASP.NET	is	built	on	the	
Common	Language	Runtime	(CLR),	allowing	programmers	to	write	ASP.NET	code	using	any	
supported	.NET	language,	such	as	C#	and	VB.NET.	

ASP.NET	web	pages	or	webpage,	known	officially	as	Web	Forms],	are	the	main	building	block	
for	application	development.	Web	forms	are	contained	in	files	with	an	“.aspx”	extension.	

Select	“ASP.NET	Application”	in	the	“New	Project”	window:	

46	 	 Web	Programming	 	

Tutorial:	Introduction	to	Visual	Studio	and	C#	

	

8.7.	 AJAX/	ASP.NET	AJAX	
AJAX	is	an	acronym	for	Asynchronous	JavaScript	and	XML.	AJAX	is	a	group	of	interrelated	
web	development	methods	used	on	the	client-side	to	create	interactive	web	applications.	
With	Ajax,	web	applications	can	send	data	to,	and	retrieve	data	from,	a	server	
asynchronously	(in	the	background)	without	interfering	with	the	display	and	behavior	of	the	
existing	page.	

ASP.NET	AJAX	is	a	set	of	extensions	to	ASP.NET	developed	by	Microsoft	for	implementing	
AJAX	functionality.	

8.8.	 Silverlight	
Microsoft	Silverlight	is	an	application	framework	for	writing	and	running	browser	plug-ins	or	
other	rich	internet	applications,	with	features	and	purposes	similar	to	those	of	Adobe	Flash.	
The	run-time	environment	for	Silverlight	is	available	as	a	plug-in	for	most	web	browsers.	
Silverlight	is	also	one	of	the	two	application	development	platforms	for	Windows	Phone	7/8.	

The	latest	version	is	Silverlight	5.0.	

Silverlight	is	based	on	WPF,	so	in	Silverlight	applications,	user	interfaces	are	declared	in	
Extensible	Application	Markup	Language	(XAML)	and	programmed	using	a	subset	of	the	.NET	
Framework.	

	

47	

	

9.	 Database	Programming	
Most	of	today’s	applications	use	a	backend	database	to	store	important	data,	e.g.,	Facebook,	
Twitter,	etc.	

In	order	to	use	databases	in	our	applications	we	need	to	know	Structured	Query	language	
(SQL).	For	more	information	about	SQL,	see	the	following	Tutorial:	

Structured	Query	Language	(SQL)	

In	addition	you	need	to	know	about	database	systems.	We	have	different	kind	of	database	
systems	and	lots	of	different	vendors.	Since	this	Tutorial	is	about	Visual	Studio	and	C#,	we	
will	use	Microsoft	SQL	Server.	For	more	information	about	database	systems	in	general	and	
specially	SQL	Server,	see	the	following	Tutorial:	

Introduction	to	Database	Systems	 	

The	Tutorials	are	available	from:	http://home.hit.no/~hansha	 	

9.1.	 ADO.NET	
ADO.NET	(ActiveX	Data	Object	for	.NET)	is	a	set	of	computer	software	components	that	
programmers	can	use	to	access	data	and	data	services.	It	is	a	part	of	the	base	class	library	
that	is	included	with	the	Microsoft	.NET	Framework.	It	is	commonly	used	by	programmers	to	
access	and	modify	data	stored	in	relational	database	systems,	though	it	can	also	access	data	
in	non-relational	sources.	

	

	

	

	

	

Hans-Petter	Halvorsen,	M.Sc.	
	

E-mail:	hans.p.halvorsen@hit.no	

Blog:	http://home.hit.no/~hansha/	

	
	

University	College	of	Southeast	Norway	

www.usn.no	
	 	

	

